gpt4 book ai didi

python - ValueError:形状 (100,784) 和 (4,6836) 未对齐:784 (dim 1) != 4 (dim 0)

转载 作者:行者123 更新时间:2023-11-30 08:48:34 25 4
gpt4 key购买 nike

更新:我修复了错误,所以我只需要第二个问题的答案!

我对 Python 相当陌生,在执行任务时遇到错误。我查找了此错误,但没有找到答案。

所以,这就是我正在尝试做的事情。

我想建立一个能够预测值的神经网络。我用于该类的代码如下

# neural network class definition

神经网络类:

#Step 1: initialise the neural network: number of input layers, hidden layers and output layers
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
#set number of nodes in each input, hidden, output layer
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes

#link weight matrices, wih and who (weights in hidden en output layers), we are going to create matrices for the multiplication of it to get an output
#weights inside the arrays (matrices) are w_i_j, where link is from node i to node j in the next layer
#w11 w21
#w12 w22 etc
self.wih = numpy.random.normal(0.0,pow(self.inodes,-0.5),( self.hnodes, self.inodes))
self.who = numpy.random.normal(0.0,pow(self.hnodes,-0.5),( self.onodes, self.hnodes))

# setting the learning rate
self.lr = learningrate

# activation function is the sigmoid function
self.activation_function = lambda x: scipy.special.expit(x)

pass

#Step 2: training the neural network - adjust the weights based on the error of the network
def train(self, inputs_list, targets_list):
#convert input lists to 2d array (matrice)
inputs = numpy.array(inputs_list, ndmin=2).T
targets = numpy.array(targets_list, ndmin=2).T

#calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih, inputs)
#calculate signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)

#calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
#calculate signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)
# output layer error is the (target-actual)
output_errors = targets -final_outputs
#hidden layer error is the output_errors, split by weights, recombined at hidden nodes
hidden_errors = numpy.dot(self.who.T, output_errors)

#update the weights for the links between the hidden and output layers
self.who += self.lr * numpy.dot((output_errors*final_outputs * (1.0-final_outputs)),numpy.transpose(hidden_outputs))

# update the weights for the links between the input and hidden layers
self.wih += self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs))

pass

#Seap 3: giving an output- thus making the neural network perform a guess
def query(self, inputs_list):
#convert input lists to 2d array (matrice)
inputs = numpy.array(inputs_list, ndmin=2).T

#calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih, inputs)
#calculate signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)

#calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
#calculate signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)

return final_outputs

我显然首先导入了必要的东西:

import numpy 
#scipy.special for the sigmoid function expit()
import scipy.special

然后我创建了一个神经网络实例:

#number of input, hidden and output nodes
input_nodes = 784
hidden_nodes = 100
output_nodes = 10

#learning rate is 0.8
learning_rate = 0.8

#create instance of neural network
n = neuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate)

此后,我读取包含输入和目标的 Excel 文件

import pandas as pd
df = pd.read_excel("Desktop\\PythonTest.xlsx")

该文件如下所示:

snapshot of file

h、P、D、o 列是输入,EOQ 列是神经网络应该学习的数字。

所以,我首先这样做了:

xcol=["h","P","D","o"]
ycol=["EOQ"]
x=df[xcol].values
y=df[ycol].values

定义 x 和 y 列。 x 是输入,y 是目标。

我现在想根据这些数据训练神经网络,并且我使用了这些代码行;

# train the neural network
# go through all records in the training data set
for record in df:
inputs = x
targets = y
n.train(inputs, targets)
pass

这给了我以下错误:

---------------------------------------------------------------------------
ValueError Traceback (most recent call
last)
<ipython-input-23-48e0e741e8ec> in <module>()
4 inputs = x
5 targets = y
----> 6 n.train(inputs, targets)
7 pass

<ipython-input-13-12c121f6896b> in train(self, inputs_list, targets_list)
31
32 #calculate signals into hidden layer
---> 33 hidden_inputs = numpy.dot(self.wih, inputs)
34 #calculate signals emerging from hidden layer
35 hidden_outputs = self.activation_function(hidden_inputs)

ValueError: shapes (100,784) and (4,6836) not aligned: 784 (dim 1) != 4
(dim 0)

有两个问题:

  1. 代码出了什么问题?
  2. 我想在文件中添加一个额外的列,其中包含神经网络训练后的猜测。我该如何实现这一目标?

提前非常感谢并感谢任何反馈!

干杯

史蒂文

最佳答案

您已经在使用 pandas,因此您可以简单地获取所有输出,并为 pandas df 创建一个新列。

result = [nn.query(input) for input in df]
df['result'] = result

关于python - ValueError:形状 (100,784) 和 (4,6836) 未对齐:784 (dim 1) != 4 (dim 0),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53438827/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com