gpt4 book ai didi

pandas - 分割数据以按条件进行训练和测试

转载 作者:行者123 更新时间:2023-11-30 08:48:28 27 4
gpt4 key购买 nike

假设我有一个包含贷款信息的 pandas DataFrame,并且我想预测用户不归还资金的概率(由我的数据框中的 default 列指示)。我想使用 sklearn.model_selection.train_test_split 拆分训练集和测试集中的数据。

但是,我想确保具有相同 customerID 的贷款不会同时出现在测试集中和训练集中。我该怎么做?

下面是我的数据示例:

d = {'loan_date': ['20170101','20170701','20170301','20170415','20170515'],
'customerID': [111,111,222,333,444],
'loanID': ['aaa','fff','ccc','ddd','bbb'],
'loan_duration' : [6,3,12,5,12],
'gender':['F','F','M','F','M'],
'loan_amount': [20000,10000,30000,10000,40000],
'default':[0,1,0,0,1]}

df = pd.DataFrame(data=d)
例如,

CustomerID==111 贷款记录应该出现在测试集中或训练集中,但不能同时出现在两者中。

最佳答案

我提出以下解决方案。具有相同 customerID 的客户不会出现在训练和测试中; aslo 客户按其事件划分 - 即,具有相同贷款数量的用户将被置于训练和测试中。

我出于演示目的扩展了数据示例:

d = {'loan_date': ['20170101','20170701','20170301','20170415','20170515','20170905', '20170814', '20170819', '20170304'],         
'customerID': [111,111,222,333,444,222,111,444,555],
'loanID': ['aaa','fff','ccc','ddd','bbb','eee', 'kkk', 'zzz', 'yyy'],
'loan_duration' : [6,3,12,5,12, 3, 17, 4, 6],
'gender':['F','F','M','F','M','M', 'F', 'M','F'],
'loan_amount': [20000,10000,30000,10000,40000,20000,30000,30000,40000],
'default':[0,1,0,0,1,0,1,1,0]}

df = pd.DataFrame(data=d)

代码:

from sklearn.model_selection import train_test_split

def group_customers_by_activity(df):
value_count = df.customerID.value_counts().reset_index()
df_by_customer = df.set_index('customerID')
df_s = [df_by_customer.loc[value_count[value_count.customerID == count]['index']] for count in value_count.customerID.unique()]
return df_s

- 此函数按 customerID 事件拆分 df(具有相同 customerID 的条目数)。
该函数的示例输出:

group_customers_by_activity(df)
Out:
[ loan_date loanID loan_duration gender loan_amount default
customerID
111 20170101 aaa 6 F 20000 0
111 20170701 fff 3 F 10000 1
111 20170814 kkk 17 F 30000 1,
loan_date loanID loan_duration gender loan_amount default
customerID
222 20170301 ccc 12 M 30000 0
222 20170905 eee 3 M 20000 0
444 20170515 bbb 12 M 40000 1
444 20170819 zzz 4 M 30000 1,
loan_date loanID loan_duration gender loan_amount default
customerID
333 20170415 ddd 5 F 10000 0
555 20170304 yyy 6 F 40000 0]

- 拥有 1、2、3 笔贷款等的用户组。

此函数以用户进行训练或测试的方式拆分组:

def split_group(df_group, train_size=0.8):
customers = df_group.index.unique()
train_customers, test_customers = train_test_split(customers, train_size=train_size)
train_df, test_df = df_group.loc[train_customers], df_group.loc[test_customers]
return train_df, test_df

split_group(df_s[2])
Out:
( loan_date loanID loan_duration gender loan_amount default
customerID
444 20170515 bbb 12 M 40000 1
444 20170819 zzz 4 M 30000 1,
loan_date loanID loan_duration gender loan_amount default
customerID
222 20170301 ccc 12 M 30000 0
222 20170905 eee 3 M 20000 0)

剩下的就是将其应用于所有“客户事件”组:

def get_sized_splits(df_s, train_size):
train_splits, test_splits = zip(*[split_group(df_group, train_size) for df_group in df_s])
return train_splits, test_splits

df_s = group_customers_by_activity(df)
train_splits, test_splits = get_sized_splits(df_s, 0.8)
train_splits, test_splits
Out:
((Empty DataFrame
Columns: [loan_date, loanID, loan_duration, gender, loan_amount, default]
Index: [],
loan_date loanID loan_duration gender loan_amount default
customerID
444 20170515 bbb 12 M 40000 1
444 20170819 zzz 4 M 30000 1,
loan_date loanID loan_duration gender loan_amount default
customerID
333 20170415 ddd 5 F 10000 0),
( loan_date loanID loan_duration gender loan_amount default
customerID
111 20170101 aaa 6 F 20000 0
111 20170701 fff 3 F 10000 1
111 20170814 kkk 17 F 30000 1,
loan_date loanID loan_duration gender loan_amount default
customerID
222 20170301 ccc 12 M 30000 0
222 20170905 eee 3 M 20000 0,
loan_date loanID loan_duration gender loan_amount default
customerID
555 20170304 yyy 6 F 40000 0))

不要害怕空的DataFrame,它很快就会被连接起来。 split 函数具有以下定义:

def split(df, train_size):
df_s = group_customers_by_activity(df)
train_splits, test_splits = get_sized_splits(df_s, train_size=train_size)
return pd.concat(train_splits), pd.concat(test_splits)

split(df, 0.8)
Out[106]:
( loan_date loanID loan_duration gender loan_amount default
customerID
444 20170515 bbb 12 M 40000 1
444 20170819 zzz 4 M 30000 1
555 20170304 yyy 6 F 40000 0,
loan_date loanID loan_duration gender loan_amount default
customerID
111 20170101 aaa 6 F 20000 0
111 20170701 fff 3 F 10000 1
111 20170814 kkk 17 F 30000 1
222 20170301 ccc 12 M 30000 0
222 20170905 eee 3 M 20000 0
333 20170415 ddd 5 F 10000 0)

- 因此,customerID 被放置在训练数据或测试数据中。我猜想这样一个奇怪的缝隙(训练>测试)是因为输入数据很小。
如果您不需要按“customerID Activity”进行分组,则可以省略它并仅使用 split_group 来实现目标。

关于pandas - 分割数据以按条件进行训练和测试,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54389035/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com