- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试实现一个用于 DNA 序列分类的 LSTM 模型,但目前它无法使用,因为训练需要很长时间(超过 6.5K 序列每个周期 25 秒,每个样本大约 4 毫秒,我们需要训练模型的多个版本超过数百个或数千个序列)。
DNA 序列可以表示为 A、C、G 和 T 的字符串,例如“ACGGGTGACAT”可以是单个DNA序列的例子。每个序列都属于我尝试预测的两个类别之一,每个序列包含 1000 个字符。
最初,我的模型不包含嵌入层,而是手动将每个序列转换为 one-hot 编码矩阵(4 行 x 1000 列),该模型效果不佳,但速度非常快。此时,虽然我在网上看到使用嵌入层具有明显的优势。因此,我添加了一个嵌入层,而不是使用单热编码矩阵,而是将序列转换为整数,每个字符由不同的整数表示。
事实上,该模型现在工作得好多了,但速度慢了大约 30 倍,而且无法使用。我可以在这里做些什么来加速嵌入层吗?
以下是构建和拟合模型的函数:
from tensorflow.keras.layers import Embedding, Dense, LSTM, Activation
from tensorflow.keras import Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical
def build_model():
# initialize a sequential model
model = Sequential()
# add embedding layer
model.add(Embedding(5, 1, input_length=1000, mask_zero=True))
# Add LSTM layer
model.add(
LSTM(5)
)
# Add Dense NN layer
model.add(
Dense(units=2)
)
model.add(Activation('softmax'))
optimizer = Adam(clipnorm=1.)
model.compile(
loss="categorical_crossentropy", optimizer=optimizer, metrics=['accuracy']
)
return model
def train_model(X_train, y_train, epochs, batch_size):
model = build_model()
# y_train is initially a list of zeroes and ones, needs to be converted to categorical
y_train = to_categorical(y_train)
history = model.fit(
X_train, y_train, epochs=epochs, batch_size=batch_size
)
return model, history
任何帮助将不胜感激 - 经过多次谷歌搜索和反复试验后,我似乎无法加快速度。
最佳答案
一个可能的建议是使用“更便宜”的 RNN,例如 SimpleRNN,而不是 LSTM。它需要训练的参数较少。在一些简单的测试中,我的速度比 LSTM 提高了约 3 倍,并且使用与您当前相同的嵌入处理。不确定是否可以将序列长度从 1000 减少到更低的数字,但这也可能是一个值得探索的方向。我希望这会有所帮助。
关于python - 有没有办法加速 tf.keras 中的嵌入层?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58441398/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!