gpt4 book ai didi

python-3.x - sklearn 中的 K 最近邻 - ValueError : query data dimension must match training data dimension

转载 作者:行者123 更新时间:2023-11-30 08:46:38 28 4
gpt4 key购买 nike

我正在尝试对在 UCI 机器学习数据库中找到的一些文本识别数据进行 k 最近邻预测。 (https://archive.ics.uci.edu/ml/datasets/Letter+Recognition)

我交叉验证了数据并测试了准确性,没有任何问题,但我无法运行 classifier.predict()。谁能解释一下为什么我会收到此错误?我在 sklearn 网站上阅读了关于维数诅咒的内容,但我在实际修复代码时遇到了麻烦。

到目前为止我的代码如下:

import pandas as pd
import numpy as np
from sklearn import preprocessing, cross_validation, neighbors

df = pd.read_csv('KMeans_letter_recog.csv')

X = np.array(df.drop(['Letter'], 1))
y = np.array(df['Letter'])

X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size = 0.2) #20% data used

clf = neighbors.KNeighborsClassifier()
clf.fit(X_train, y_train)
accuracy = clf.score(X_test, y_test) #test
print(accuracy) #this works fine

example = np.array([7,4,3,2,4,5,3,6,7,4,2,3,5,6,8,4])
example = X.reshape(len(example), -1)

prediction = clf.predict(example)
print(prediction) #error

df.head() 产生:

 Letter   x-box   y-box   box_width   box_height   on_pix   x-bar_mean  \
0 T 2 8 3 5 1 8
1 I 5 12 3 7 2 10
2 D 4 11 6 8 6 10
3 N 7 11 6 6 3 5
4 G 2 1 3 1 1 8

y-bar_mean x2bar_mean y2bar_mean xybar_mean x2y_mean xy2_mean \
0 13 0 6 6 10 8
1 5 5 4 13 3 9
2 6 2 6 10 3 7
3 9 4 6 4 4 10
4 6 6 6 6 5 9

x-ege xegvy y-ege yegvx
0 0 8 0 8
1 2 8 4 10
2 3 7 3 9
3 6 10 2 8
4 1 7 5 10

我的错误提要如下:

Traceback (most recent call last):
File "C:\Users\jai_j\Desktop\Python Projects\K Means ML.py", line 31, in <module>
prediction = clf.predict(example)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\neighbors\classification.py", line 145, in predict
neigh_dist, neigh_ind = self.kneighbors(X)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\neighbors\base.py", line 381, in kneighbors
for s in gen_even_slices(X.shape[0], n_jobs)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 758, in __call__
while self.dispatch_one_batch(iterator):
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 608, in dispatch_one_batch
self._dispatch(tasks)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 571, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py", line 109, in apply_async
result = ImmediateResult(func)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py", line 326, in __init__
self.results = batch()
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 131, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 131, in <listcomp>
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "sklearn\neighbors\binary_tree.pxi", line 1294, in sklearn.neighbors.kd_tree.BinaryTree.query (sklearn\neighbors\kd_tree.c:11325)
ValueError: query data dimension must match training data dimension

提前感谢您的帮助,我将继续寻找答案

最佳答案

您的问题是您没有 reshape example并且您正在 reshape 到不正确的尺寸。您正在将 X 数组 reshape 为 (16, N),其中 NX 中的观测值数量>.

因此,当您尝试对 example 进行预测时,您最终会使用分类器对 reshape 为 NX 进行预测列,而不是您训练时的 16 列。

您似乎想对单个示例进行预测,因此您应该 reshape 它而不是 X。据推测,您需要 example = example.reshape(1, -1) 而不是 example = X.reshape(len(example), -1)

最初,您创建形状为 (16,)example。您应该使用 (1, -1) 作为尺寸,将其 reshape 为 (1, 16)。这将产生一个形状为 (1, 16) 的数组,它适合您的分类器。

为了清楚起见,请尝试将代码更改为:

example = np.array([7,4,3,2,4,5,3,6,7,4,2,3,5,6,8,4])
example = example.reshape(1, -1)

prediction = clf.predict(example)
print(prediction) # shouldn't error anymore

关于python-3.x - sklearn 中的 K 最近邻 - ValueError : query data dimension must match training data dimension,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41472015/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com