- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个包含超过 1700 万个观测值的数据集,我正在尝试使用它来训练 DNNRegressor
模型。然而,培训根本不起作用。损失约为 10^15,这实在是太可怕了。几周来我一直在尝试不同的事情,无论我做什么,我都无法减少损失。
例如,训练后,我使用用于训练数据的相同观察结果之一进行测试预测。预期结果是 140944.00
,但预测结果是 -169532.5
,这是荒谬的。训练数据中甚至没有任何负值,我不明白它怎么会这么差。
以下是一些示例训练数据:
Amount Contribution ServiceType Percentile Time Result
214871.00 3501.00 SM23 high 50 17807828.00
214871.00 3501.00 SM23 high 51 19216520.00
214871.00 3501.00 SM23 high 52 19676064.00
214871.00 3501.00 SM23 high 53 21038840.00
214871.00 3501.00 SM23 high 54 22248295.00
214871.00 3501.00 SM23 high 55 22412713.00
28006.00 83.00 SM0 i_low 0 28006.00
28006.00 83.00 SM0 i_low 1 28804.00
28006.00 83.00 SM0 i_low 2 30140.00
28006.00 83.00 SM0 i_low 3 31598.00
28006.00 83.00 SM0 i_low 4 33130.00
28006.00 83.00 SM0 i_low 5 34663.00
这是我的代码:
feature_columns = [
tf.feature_column.numeric_column('Amount', dtype=dtypes.float32),
tf.feature_column.numeric_column('Contribution', dtype=dtypes.float32),
tf.feature_column.embedding_column(
tf.feature_column.categorical_column_with_vocabulary_list(
'ServiceType',
[
'SM0', 'SM1', 'SM2', 'SM3',
'SM4', 'SM5', 'SM6', 'SM7',
'SM8', 'SM9', 'SM10', 'SM11',
'SM12', 'SM13', 'SM14', 'SM15',
'SM16', 'SM17', 'SM18', 'SM19',
'SM20', 'SM21', 'SM22', 'SM23'
],
dtype=dtypes.string
),
dimension=16
),
tf.feature_column.embedding_column(
tf.feature_column.categorical_column_with_vocabulary_list(
'Percentile',
['i_low', 'low', 'mid', 'high'],
dtype=dtypes.string
),
dimension=16
),
tf.feature_column.numeric_column('Time', dtype=dtypes.int8)
]
model = tf.estimator.DNNRegressor(
hidden_units=[64, 32],
feature_columns=feature_columns,
model_dir=os.getcwd() + "\job",
label_dimension=1,
weight_column=None,
optimizer='Adagrad',
activation_fn=tf.nn.elu,
dropout=None,
input_layer_partitioner=None,
config=RunConfig(
master=None,
num_cores=4,
log_device_placement=False,
gpu_memory_fraction=1,
tf_random_seed=None,
save_summary_steps=100,
save_checkpoints_secs=0,
save_checkpoints_steps=None,
keep_checkpoint_max=5,
keep_checkpoint_every_n_hours=10000,
log_step_count_steps=100,
evaluation_master='',
model_dir=os.getcwd() + "\job",
session_config=None
)
)
print('Training...')
model.train(input_fn=get_input_fn('train'), steps=100000)
print('Evaluating...')
model.evaluate(input_fn=get_input_fn('test'), steps=4000)
print('Predicting...')
prediction = model.predict(input_fn=get_input_fn('predict'))
print(list(prediction))
input_fn
计算如下:
def split_input():
data = pd.read_csv('C:\\all_data.txt', sep='\t')
x = data.drop('Result', axis=1)
y = data.Result
return train_test_split(x, y, test_size=0.2, random_state=123)
def get_input_fn(input_fn_type):
train_x, test_x, train_y, test_y = split_input()
if input_fn_type == 'train':
return tf.estimator.inputs.pandas_input_fn(
x=train_x,
y=train_y,
num_epochs=None,
shuffle=True
)
elif input_fn_type == 'test':
return tf.estimator.inputs.pandas_input_fn(
x=test_x,
y=test_y,
num_epochs=1,
shuffle=False
)
elif input_fn_type == 'predict':
return tf.estimator.inputs.pandas_input_fn(
x=pd.DataFrame(
{
'Amount': 52050.00,
'Contribution': 1394.00,
'ServiceType': 'SM0',
'Percentile': 'i_low',
'Time': 5
},
index=[0]
),
num_epochs=1,
shuffle=False
)
输出如下:
Training...
INFO:tensorflow:loss = 6.30944e+15, step = 1
INFO:tensorflow:global_step/sec: 457.091
INFO:tensorflow:loss = 3.28245e+15, step = 101 (0.219 sec)
INFO:tensorflow:global_step/sec: 533.271
INFO:tensorflow:loss = 2.65647e+15, step = 201 (0.188 sec)
INFO:tensorflow:global_step/sec: 533.274
...
INFO:tensorflow:loss = 1.06601e+15, step = 99701 (0.203 sec)
INFO:tensorflow:global_step/sec: 533.289
INFO:tensorflow:loss = 2.12652e+15, step = 99801 (0.188 sec)
INFO:tensorflow:global_step/sec: 533.273
INFO:tensorflow:loss = 1.31647e+15, step = 99901 (0.203 sec)
INFO:tensorflow:Saving checkpoints for 100000 into C:\projection_model\job\model.ckpt.
INFO:tensorflow:Loss for final step: 2.88956e+15.
Evaluating...
INFO:tensorflow:Evaluation [1/4000]
INFO:tensorflow:Evaluation [2/4000]
INFO:tensorflow:Evaluation [3/4000]
...
INFO:tensorflow:Evaluation [3998/4000]
INFO:tensorflow:Evaluation [3999/4000]
INFO:tensorflow:Evaluation [4000/4000]
INFO:tensorflow:Finished evaluation at 2017-08-30-19:04:03
INFO:tensorflow:Saving dict for global step 100000: average_loss = 1.37941e+13, global_step = 100000, loss = 1.76565e+15
Predicting...
[{'predictions': array([-169532.5], dtype=float32)}] # Should be somewhere around 140944.00
为什么模型不学习数据?我尝试了不同的回归器和输入标准化,但没有任何效果。
最佳答案
tf.contrib.learn.DNNRegressor
隐藏了太多细节,如果一切都能立即正常工作,这很好,但当需要一些调试时,这就非常令人沮丧了。
例如,学习率很可能太大。您不会在代码中看到学习率,因为它是由 DNNRegressor
选择的。默认情况下,it's 0.05 ,这对于许多应用程序来说是合理的,但在您的特定情况下可能太大。我建议您自己实例化优化器 AdagradOptimizer(learning_rate)
并将其传递给 DNNRegressor
。
也可能是初始权重太大。 DNNRegressor
使用 tf.contrib.layers.fully_connected
层而不覆盖weights_initializer
和 biases_initializer
。和以前一样,默认值非常合理,但如果您希望它有所不同,您根本无法控制它。
为了检查神经网络是否至少以某种方式工作,我通常所做的就是将训练集减少到几个例子,并尝试过度拟合神经网络。这个实验非常快,所以我可以尝试各种学习率和其他超参数来找到最佳点,然后转向更大的数据集。
进一步故障排除:可视化每层激活的分布、tensorboard中梯度或权重的分布缩小问题范围。
关于machine-learning - TensorFlow 训练不起作用 : model is not learning data,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45968117/
我对 mongoosejs 中模型的使用感到有些困惑。 可以通过这些方式使用 mongoose 创建模型 使用 Mongoose var mongoose = require('mongoose');
我正在看 from django.db import models class Publisher(models.Model): name = models.CharField(max_len
我有自己的 html 帮助器扩展,我用这种方式 model.Reason_ID, Register.PurchaseReason) %> 这样声明的。 public static MvcHtmlS
假设模型原本是存储在CPU上的,然后我想把它移到GPU0上,那么我可以这样做: device = torch.device('cuda:0') model = model.to(device) # o
我过去读过一些关于模型的 MVC 建议,指出不应为域和 View 重用相同的模型对象;但我找不到任何人愿意讨论为什么这很糟糕。 我认为创建两个单独的模型 - 一个用于域,一个用于 View - 然后在
我正在使用pytorch构建一个像VGG16这样的简单模型,并且我已经重载了函数forward在我的模型中。 我发现每个人都倾向于使用 model(input)得到输出而不是 model.forwar
tf.keras API 中的 models 是否多余?对于某些情况,即使不使用 models,代码也能正常运行。 keras.models.sequential 和 keras.sequential
当我尝试使用 docker 镜像运行 docker 容器时遇到问题:tensorflow/serving。 我运行命令: docker run --name=tf_serving -it tensor
我有一个模型,我用管道注册了它: register_step = PythonScriptStep(name = "Register Model",
如果 View 需要访问模型中的数据,您是否认为 Controller 应: a)将模型传递给 View b)将模型的数据传递给 View c)都不;这不应该是 Controller 所关心的。让 V
我正在寻找一个可以在模型中定义的字段,该字段本质上是一个列表,因为它将用于存储多个字符串值。显然CharField不能使用。 最佳答案 您正在描述一种多对一的关系。这应该通过一个额外的 Model 进
我最近了解了 Django 中的模型继承。我使用很棒的包 django-model-utils 取得了巨大的成功。我继承自 TimeStampedModel 和 SoftDeletableModel。
我正在使用基于 resnet50 的双输出模型进行项目。一个输出用于回归任务,第二个输出用于分类任务。 我的主要问题是关于模型评估。在训练期间,我在验证集的两个输出上都取得了不错的结果: - 综合损失
我是keras的新手。现在,我将使用我使用 model.fit_generator 训练的模型来预测测试图像组。我可以使用 model.predict 吗?不确定如何使用model.predict_g
在 MVC 应用程序中,我加入了多个表并将其从 Controller 返回到 View,如下所示: | EmployeeID | ControlID | DoorAddress | DoorID |
我在使用 sails-cassandra 连接系统的 Sails 中有一个 Data 模型。数据。 Data.count({...}).exec() 返回 1,但 Data.find({...}).e
我正在使用 PrimeFaces dataTable 开发一个 jsf 页面来显示用户列表。用户存储在 Model.User 类的对象中。
我正在关注https://www.tensorflow.org/tutorials/keras/basic_classification解决 Kaggle 挑战。 但是,我不明白应该将什么样的数据输入
我是这个领域的新手。那么,你们能帮忙如何为 CNN 创建 .config 文件吗? 传递有关如何执行此操作的文档或教程将对我有很大帮助。谢谢大家。 最佳答案 这个问题对我来说没有多大意义,因为 .co
我是“物理系统建模”主题的新手。我阅读了一些基础文献,并在 Modelica 和 Simulink/Simscape 中做了一些教程。我想问你,如果我对以下内容理解正确: 符号操作是将微分代数方程组(
我是一名优秀的程序员,十分优秀!