- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试编写代码来从 CSV 文件加载数据类型后识别数据类型。因此有 5 个可能的标签,并且特征向量包含列表的列表。特征向量是具有以下形状的列表的列表:
[slash_count、dash_count、colon_count、字母、dot_count、数字]
然后,我将特征和标签向量分成训练集、测试集和验证集。我在 Stackoverflow 上找到了一些有人编写的代码来执行此操作,我也使用了相同的代码:
X_train, X_test, y_train, y_test = train_test_split(ml_list, labels, test_size=0.3, random_state=1)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.3, random_state=1)
完成此操作后,我将尺度 [0,1] 中的特征标准化,然后为标签创建分类变量:
min_max_scaler = preprocessing.MinMaxScaler()
X_train_minmax = min_max_scaler.fit_transform(X_train)
X_test_minmax = min_max_scaler.fit_transform(X_test)
X_val_minmax = min_max_scaler.fit_transform(X_val)
from keras.utils import to_categorical
y_train_minmax = to_categorical(y_train)
y_test_minmax = to_categorical(y_test)
y_val_minmax = to_categorical(y_val)
接下来,我尝试找到新编码变量的形状:
print(y_train_minmax.shape) #(91366, 4)
print(X_train_minmax.shape) #(91366, 6)
print(X_test_minmax.shape) #(55939, 6)
print(X_val_minmax.shape) #(39157, 6)
print(y_train_minmax.shape) #(91366, 4)
print(y_test_minmax.shape) #(55939, 4)
print(y_val_minmax.shape) #(39157, 4)
最后,我构建模型并尝试拟合它:
model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input_shape=(91366, 6)))
model.add(layers.Dense(3, activation='softmax'))
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X_train_minmax, y_train_minmax, epochs=5, batch_size=128)
运行代码时收到此消息:
ValueError: Error when checking input: expected dense_1_input to have 3 dimensions, but got array with shape (91366, 6)
我相信错误出现在我使用输入形状创建神经网络时。我很难理解我错在哪里。任何帮助都会很棒!
最佳答案
您应该更改此行:
model.add(layers.Dense(512, activation='relu', input_shape=(6,)))
在 keras
中,您无需直接指定数据集中的示例数量。作为 input_shape
,您只需提供单个数据点的形状。
我在您的代码片段中发现的另一个潜在错误是您应该设置:
model.add(layers.Dense(4, activation='softmax'))
由于您的输出单个数据点的形状为(4,)
。这与您所说的可能的层不一致,因此我还建议重新检查您的数据。
我发现的另一个可能的错误是,您没有为 train
、test
和 valid
数据集训练单独的缩放器 - 而是单个缩放器在train
集上 - 然后使用经过训练的缩放器缩放其他数据集。
关于machine-learning - 在 Keras 中正确声明神经网络的 input_shape?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48243167/
这是代码: model = Sequential() model.add(LSTM(24, input_shape = (trainX.shape[0], 1, 4))) model.add(Dens
当我运行以下代码时: from keras import models from keras import layers from keras import optimizers model = mo
我必须设计一个接受两个输入 X_1 和 X_2 的神经网络。该层将它们转换为固定大小的向量(10D),然后按以下方式对它们求和 class my_lyr(tf.keras.layers.Layer):
我有一个具有以下形状的输入数据:(5395, 69, 1) 我的 input_shape 应该是: (69,1) 或 (1,69) ? 在 LSTM 层中有 69 个神经元,我得到第一个 input_
我正在尝试在文本输入上运行神经网络。这是二元分类。这是到目前为止我的工作代码: df = pd.read_csv(pathname, encoding = "ISO-8859-1") df = df[
据我所知,输入元组是从卷积 block 进入的。所以如果我们想改变 input_tuple 的形状,修改卷积是有意义的。为什么我们需要 include_top=False 并去掉最后的全连接层? 另一
在 Keras 中,为什么是 input_shape当作为参数传递给像 Dense 这样的层时,不包括批处理维度但在 input_shape 时包含批处理维度传递给 build模型的方法? impor
我正在尝试编写代码来从 CSV 文件加载数据类型后识别数据类型。因此有 5 个可能的标签,并且特征向量包含列表的列表。特征向量是具有以下形状的列表的列表: [slash_count、dash_coun
These is the image of the code LSTM model please help me to give appropriate input_dim value for the
我正在从大量 384x286 黑白图像手动创建我的数据集。 我加载这样的图像: x = [] for f in files: img = Image.open(f) i
当我们在 Keras2 中进行迁移学习时,Arguments 需要“input_shape”和“input_tensor”。但我只使用 input_tensor 并且从未使用过 input_shape
我有一个 pandas 数据框 X_train,包含 733999 个样本和 5 个特征。 model = Squential() model.add(Conv2D(filters = 32,
我想使用预训练Net,例如VGG、ResNet。在 Keras 中,必须在 input_shape 的 (w,h,3) 中指定格式。如果我想将 channel 指定为1,还有更多技巧吗? conv_v
在 Convolution2D 的 Keras 文档中,input_shape 128x128 RGB 图片由 input_shape=(3, 128, 128) 给出,因此我认为第一个组成部分应该是
长话短说 我在定义输入形状时遇到这些错误 ValueError: Error when checking input: expected conv2d_1_input to have 4 dimens
我不断从以下代码中收到 input_shape 错误。 from keras.models import Sequential from keras.layers.core import Dense,
我知道 Inception V3 的 input_shape 是 (299,299,3)。但在 Keras 中,如果 include_top 为 False,则可以构建具有自定义 input_shap
我正在尝试使用 the example described in the Keras documentation名为“用于序列分类的堆叠 LSTM”(请参阅下面的代码),并且无法在我的数据上下文中
我正在尝试转换我从 davidsandberg/facenet 获得的卡住模型使用 TF Lite Converter 到 Ubuntu 18.04.1 LTS (VirtualBox) 上的 .tf
对于任何 Keras 层(Layer 类),有人可以解释如何理解 input_shape 之间的区别吗? , units , dim , 等等。? 例如,文档说 units指定层的输出形状。 在下面的
我是一名优秀的程序员,十分优秀!