gpt4 book ai didi

machine-learning - 使用给定数据集实现深度学习架构

转载 作者:行者123 更新时间:2023-11-30 08:43:54 25 4
gpt4 key购买 nike

我对咖啡和深度学习还是很陌生的。我只是想实现深度学习架构。 Architecture

这是我正在尝试实现的架构。该架构和 Parse27k 数据集由亚琛工业大学视觉计算研究所计算机视觉小组创建和构建。

下面您可以看到我需要改进的模型:

Train_val.prototxt

name: "Parse27"
layer {
name: "data"
type: "HDF5Data"
top: "crops"
top: "labels"
include {
phase: TRAIN
}

hdf5_data_param {
source: "/home/nail/caffe/caffe/examples/hdf5_classification/data/train.txt"
batch_size: 256
}
}
layer {
name: "data"
type: "HDF5Data"
top: "crops"
top: "labels"
include {
phase: TEST
}
hdf5_data_param {
source: "/home/nail/caffe/caffe/examples/hdf5_classification/data/test.txt"
batch_size: 256
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "crops"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "labels"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "labels"
top: "loss"
}

Solver.prototxt

net: "models/Parse27/train_val.prototxt"
test_iter: 1000
test_interval: 1000
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20
max_iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "models/Parse27/Parse27_train"
solver_mode: GPU

我在实现这个架构时遇到了两个主要困难。

  1. 如上所示,我的模型不包含自定义损失层。我的模型几乎是caffeNet架构。但我应该用自定义损失层(绿色框)替换红色框内的最后一层。

  2. 我的训练数据集具有以下结构。

crops       Dataset {27482, 3, 128, 192}
labels Dataset {27482, 12}
mean Dataset {3, 128, 192}
pids Dataset {27482}

如此处所示,裁剪和标签中的行数(示例)相同 27482。但是我的标签数据集中有 12 列。当只有 1 个标签时,我的模型就可以工作。我怎样才能让它训练所有标签?

我在 Train_val.prototxt 中的模型现在看起来像这样:

enter image description here

任何形式的帮助或建议将不胜感激。

最佳答案

如果我理解正确的话,您正在尝试为每个输入示例预测 12 个离散标签(属性)。在这种情况下,您应该"Slice"标签:

layer {
type: "Slice"
name: "slice_labels"
bottom: "label"
top: "attr_00"
top: "attr_01"
top: "attr_02"
top: "attr_03"
top: "attr_04"
top: "attr_05"
top: "attr_06"
top: "attr_07"
top: "attr_08"
top: "attr_09"
top: "attr_10"
top: "attr_11"
slice_param {
axis: -1 # slice the last dimension
slice_point: 1
slice_point: 2
slice_point: 3
slice_point: 4
slice_point: 5
slice_point: 6
slice_point: 7
slice_point: 8
slice_point: 9
slice_point: 10
slice_point: 11
}
}

现在,每个属性都有一个“标量”标签。我相信你可以从这里得到它。

关于machine-learning - 使用给定数据集实现深度学习架构,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40358025/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com