- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
当我训练图表时,我发现我忘记在图表中添加 dropout。但我已经训练了很长时间并得到了一些检查点。那么我是否可以加载检查点并添加 dropout,然后继续训练?我的代码现在是这样的:
# create a graph
vgg_fcn = fcn8_vgg_ours.FCN8VGG()
with tf.name_scope("content_vgg"):
vgg_fcn.build(batch_images, train = True, debug=True)
labels = tf.placeholder("int32", [None, HEIGHT, WIDTH])
# do something
...
#####
init_glb = tf.global_variables_initializer()
init_loc = tf.local_variables_initializer()
sess.run(init_glb)
sess.run(init_loc)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
ckpt_dir = "./checkpoints"
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
ckpt = tf.train.get_checkpoint_state(ckpt_dir)
start = 0
if ckpt and ckpt.model_checkpoint_path:
start = int(ckpt.model_checkpoint_path.split("-")[1])
print("start by epoch: %d"%(start))
saver = tf.train.Saver()
saver.restore(sess, ckpt.model_checkpoint_path)
last_save_epoch = start
# continue training
那么如果我改变了FCN8VGG的结构(添加一些dropout层),那么它会使用元文件来替换我刚刚创建的图吗?如果可以的话,如何改变结构继续训练而不需要再次从头开始训练?
最佳答案
这是一个使用另一个模型检查点的变量初始化新模型的简单示例。请注意,如果您只需将 variable_scope
传递给 init_from_checkpoint
,事情就会简单得多,但这里我假设原始模型在设计时并未考虑到恢复。
首先定义一个带有一些变量的简单模型,并进行一些训练:
import tensorflow as tf
def first_model():
with tf.Graph().as_default():
fake_input = tf.constant([[1., 2., 3., 4.],
[5., 6., 7., 8.]])
layer_one_output = tf.contrib.layers.fully_connected(
inputs=fake_input, num_outputs=5, activation_fn=None)
layer_two_output = tf.contrib.layers.fully_connected(
inputs=layer_one_output, num_outputs=1, activation_fn=None)
target = tf.constant([[10.], [-3.]])
loss = tf.reduce_sum((layer_two_output - target) ** 2)
train_op = tf.train.AdamOptimizer(0.01).minimize(loss)
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as session:
session.run(init_op)
for i in range(1000):
_, evaled_loss = session.run([train_op, loss])
if i % 100 == 0:
print(i, evaled_loss)
saver.save(session, './first_model_checkpoint')
运行first_model()
,训练看起来不错,我们得到了一个first_model_checkpoint:
0 109.432
100 0.0812649
200 8.97705e-07
300 9.64064e-11
400 9.09495e-13
500 0.0
600 0.0
700 0.0
800 0.0
900 0.0
接下来,我们可以在不同的图中定义一个全新的模型,并从该检查点初始化它与first_model共享的变量:
def second_model():
previous_variables = [
var_name for var_name, _
in tf.contrib.framework.list_variables('./first_model_checkpoint')]
with tf.Graph().as_default():
fake_input = tf.constant([[1., 2., 3., 4.],
[5., 6., 7., 8.]])
layer_one_output = tf.contrib.layers.fully_connected(
inputs=fake_input, num_outputs=5, activation_fn=None)
# Add a batch_norm layer, which creates some new variables. Replacing this
# with tf.identity should verify that the model one variables are faithfully
# restored (i.e. the loss should be the same as at the end of model_one
# training).
batch_norm_output = tf.contrib.layers.batch_norm(layer_one_output)
layer_two_output = tf.contrib.layers.fully_connected(
inputs=batch_norm_output, num_outputs=1, activation_fn=None)
target = tf.constant([[10.], [-3.]])
loss = tf.reduce_sum((layer_two_output - target) ** 2)
train_op = tf.train.AdamOptimizer(0.01).minimize(loss)
# We're done defining variables, now work on initializers. First figure out
# which variables in the first model checkpoint map to variables in this
# model.
restore_map = {variable.op.name:variable for variable in tf.global_variables()
if variable.op.name in previous_variables}
# Set initializers for first_model variables to restore them from the
# first_model checkpoint
tf.contrib.framework.init_from_checkpoint(
'./first_model_checkpoint', restore_map)
# For new variables, global_variables_initializer will initialize them
# normally. For variables in restore_map, they will be initialized from the
# checkpoint.
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as session:
session.run(init_op)
for i in range(10):
_, evaled_loss = session.run([train_op, loss])
print(i, evaled_loss)
saver.save(session, './second_model_checkpoint')
在这种情况下,previous_variables
看起来像:
['beta1_power', 'beta2_power', 'fully_connected/biases', 'fully_connected/biases/Adam', 'fully_connected/biases/Adam_1', 'fully_connected/weights', 'fully_connected/weights/Adam', 'fully_connected/weights/Adam_1', 'fully_connected_1/biases', 'fully_connected_1/biases/Adam', 'fully_connected_1/biases/Adam_1', 'fully_connected_1/weights', 'fully_connected_1/weights/Adam', 'fully_connected_1/weights/Adam_1']
请注意,由于我们没有使用任何变量范围,因此命名取决于定义层的顺序。如果名称发生变化,您需要手动构建restore_map
。
如果我们运行 second_model
,损失最初会上升,因为 batch_norm
层尚未经过训练:
0 38.5976
1 36.4033
2 33.3588
3 29.8555
4 26.169
5 22.5185
6 19.0838
7 16.0096
8 13.4035
9 11.3298
但是,将 batch_norm
替换为 tf.identity
可以验证之前训练的变量是否已恢复。
关于machine-learning - 如何加载检查点文件并使用略有不同的图形结构继续训练,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43361570/
基本上,我的问题是,由于无监督学习是机器学习的一种,是否需要机器“学习”的某些方面并根据其发现进行改进?例如,如果开发了一种算法来获取未标记的图像并找到它们之间的关联,那么它是否需要根据这些关联来改进
生成模型和判别模型似乎可以学习条件 P(x|y) 和联合 P(x,y) 概率分布。但从根本上讲,我无法说服自己“学习概率分布”意味着什么。 最佳答案 这意味着您的模型要么充当训练样本的分布估计器,要么
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
是否Scikit-learn支持迁移学习?请检查以下代码。 型号 clf由 fit(X,y) 获取 jar 头型号clf2在clf的基础上学习和转移学习 fit(X2,y2) ? >>> from s
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在使用基于 rlglue 的 python-rl q 学习框架。 我的理解是,随着情节的发展,算法会收敛到一个最优策略(这是一个映射,说明在什么状态下采取什么行动)。 问题 1:这是否意味着经过若
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我正在尝试离散数据以进行分类。它们的值是字符串,我将它们转换为数字 0,1,2,3。 这就是数据的样子(pandas 数据框)。我已将数据帧拆分为 dataLabel 和 dataFeatures L
每当我开始拥有更多的类(1000 或更多)时,MultinominalNB 就会变得非常慢并且需要 GB 的 RAM。对于所有支持 .partial_fit()(SGDClassifier、Perce
我需要使用感知器算法来研究一些非线性可分数据集的学习率和渐近误差。 为了做到这一点,我需要了解构造函数的一些参数。我花了很多时间在谷歌上搜索它们,但我仍然不太明白它们的作用或如何使用它们。 给我带来更
我知道作为功能 ordinal data could be assigned arbitrary numbers and OneHotEncoding could be done for catego
这是一个示例,其中有逐步的过程使系统学习并对输入数据进行分类。 它对给定的 5 个数据集域进行了正确分类。此外,它还对停用词进行分类。 例如 输入:docs_new = ['上帝就是爱', '什么在哪
我有一个 scikit-learn 模型,它简化了一点,如下所示: clf1 = RandomForestClassifier() clf1.fit(data_training, non_binary
我是一名优秀的程序员,十分优秀!