- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用学习器 regr.gbm
来预测计数。在 mlr
之外,直接使用 gbm
包,我使用 distribution = "poisson"
和 predict.gbm
,使用 type = "response"
,返回原始比例的预测,但是我注意到,当我使用 mlr
执行此操作时,预测似乎采用对数比例:
truth response
913 4 0.67348708
914 1 0.28413256
915 3 0.41871237
916 1 0.13027792
2101 1 -0.02092168
2102 2 0.23394970
但是,“真相”并不在对数尺度上,因此我担心 mlr
中的超参数调整例程将不起作用。为了进行比较,这是我使用 distribution = "gaussian"
得到的输出。
truth response
913 4 2.028177
914 1 1.334658
915 3 1.552846
916 1 1.153072
2101 1 1.006362
2102 2 1.281811
处理这个问题的最佳方法是什么?
最佳答案
发生这种情况是因为 gbm
默认情况下会对链接函数尺度(对于 distribution = "poisson"
来说是 log
)进行预测。这是由 gbm::predict.gbm
的 type
参数控制的(请参阅该函数的帮助页面)。不幸的是,默认情况下,mlr
不提供更改此参数的功能(mlr bugtracker 中的 it was reported)。目前的解决方法是手动添加此参数:
lrn <- makeLearner("regr.gbm", distribution = "poisson")
lrn$par.set <- c(lrn$par.set,
makeParamSet(
makeDiscreteLearnerParam("type", c("link", "response"),
default = "link", when = "predict", tunable = FALSE)))
lrn <- setHyperPars(lrn, type = "response")
# show that it works:
counttask <- makeRegrTask("counttask", getTaskData(pid.task),
target = "pregnant")
pred <- predict(train(lrn, counttask), counttask)
pred
请注意,在调整计数数据的参数时,默认回归度量(均方误差)可能会过分强调对计数值较大的数据点的拟合。预测“10”而不是“1”的平方误差与预测“1010”而不是“1001”的误差相同,但根据您的目标,您可能希望更加重视本示例中的第一个错误。
一个可能的解决方案是使用(归一化)平均泊松对数似然作为度量:
poisllmeasure = makeMeasure(
id = "poissonllnorm",
minimize = FALSE,
best = 0,
worst = -Inf,
properties = "regr",
name = "Mean Poisson Log Likelihood",
note = "For count data. Normalized to 0 for perfect fit.",
fun = function(task, model, pred, feats, extra.args) {
mean(dpois(pred$data$truth, pred$data$response, log = TRUE) -
dpois(pred$data$truth, pred$data$truth, log = TRUE))
})
# example
performance(pred, poisllmeasure)
通过将此测量值赋予 tuneParams()
中的 measures
参数,可用于调整。 (请注意,您必须将其放在列表中:tuneParams(...measures = list(poisllmeasure) ...)
)
关于r - 使用 mlr 预测计数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53086410/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!