- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我试图通过将特征选择方法应用于我的数据集来找到最有值(value)的特征。我现在使用 SelectKBest 函数。我可以生成分值并根据需要对它们进行排序,但我不明白这个分值是如何计算的。我知道理论上的高分更有值(value),但我需要一个数学公式或一个例子来计算分数才能深入学习。
bestfeatures = SelectKBest(score_func=chi2, k=10)
fit = bestfeatures.fit(dataValues, dataTargetEncoded)
feat_importances = pd.Series(fit.scores_, index=dataValues.columns)
topFatures = feat_importances.nlargest(50).copy().index.values
print("TOP 50 Features (Best to worst) :\n")
print(topFatures)
提前谢谢
最佳答案
假设您有一个功能和一个具有 3 个可能值的目标
X = np.array([3.4, 3.4, 3. , 2.8, 2.7, 2.9, 3.3, 3. , 3.8, 2.5])
y = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 2])
X y
0 3.4 0
1 3.4 0
2 3.0 0
3 2.8 1
4 2.7 1
5 2.9 1
6 3.3 2
7 3.0 2
8 3.8 2
9 2.5 2
First我们对目标进行二值化
y = LabelBinarizer().fit_transform(y)
X y1 y2 y3
0 3.4 1 0 0
1 3.4 1 0 0
2 3.0 1 0 0
3 2.8 0 1 0
4 2.7 0 1 0
5 2.9 0 1 0
6 3.3 0 0 1
7 3.0 0 0 1
8 3.8 0 0 1
9 2.5 0 0 1
然后在特征和目标之间执行点积,即按类值对所有特征值求和
observed = y.T.dot(X)
>>> observed
array([ 9.8, 8.4, 12.6])
接下来求特征值的总和并计算类别频率
feature_count = X.sum(axis=0).reshape(1, -1)
class_prob = y.mean(axis=0).reshape(1, -1)
>>> class_prob, feature_count
(array([[0.3, 0.3, 0.4]]), array([[30.8]]))
现在,就像第一步一样,我们采用点积,并得到预期矩阵和观察矩阵
expected = np.dot(class_prob.T, feature_count)
>>> expected
array([[ 9.24],[ 9.24],[12.32]])
最后我们计算 chi^2 值:
chi2 = ((observed.reshape(-1,1) - expected) ** 2 / expected).sum(axis=0)
>>> chi2
array([0.11666667])
我们有一个 chi^2 值,现在我们需要判断它有多极端。为此,我们使用 chi^2 distribution类数 - 1 自由度并计算从 chi^2 到无穷大的面积,以获得 chi^2 与我们得到的相同或更极端的概率。这是一个 p 值。 (使用 scipy 中的卡方生存函数)
p = scipy.special.chdtrc(3 - 1, chi2)
>>> p
array([0.94333545])
与SelectKBest
比较:
s = SelectKBest(chi2, k=1)
s.fit(X.reshape(-1,1),y)
>>> s.scores_, s.pvalues_
(array([0.11666667]), [0.943335449873492])
关于python - SelectKBest (chi2) 如何计算分数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57273694/
直接从 Python 代码运行 pylint 时,我似乎无法获得任何返回值。从命令行运行它会生成一个漂亮的报告,在底部有一个总结分数。 我已经尝试将“Run”的返回值放入一个变量中,并获取它的“rep
我是 Python 新手,正在尝试学习单词检测。我有一个带有单词的数据框 sharina['transcript'] Out[25]: 0 thank you for calling my
http://jsfiddle.net/q8P7Y/ 我在最后显示最终分数时遇到问题,有很多方法可以做到这一点,但我不确定什么是最好的。 正如你所看到的,下一个按钮只是 div 的显示/隐藏,而不是页
我使用滑动 slider 并有计数器分数。它计数很好,但我需要计数 =(所有幻灯片 - 1)。例如,如果我有 20 张幻灯片,我想显示总数 19。有什么办法可以做到这一点吗?我使用他们网站上的常规 j
我使用滑动 slider 并有计数器分数。它计数很好,但我需要计数 =(所有幻灯片 - 1)。例如,如果我有 20 张幻灯片,我想显示总数 19。有什么办法可以做到这一点吗?我使用他们网站上的常规 j
我试图在按下按钮时添加分数,分数显示在 JTextField 中,但是当按下按钮时,分数会添加,它显示为 0。我有一个存储分数的整数字段 private int score=0; yesButton
我可以在选项(单选按钮)随机播放之前计算分数/分数,如下面的代码所示。在Collection.shuffle()之前,选项是固定的,因为 CorrectChoice将始终分配给c2单选按钮。那么我可以
我在这里的代码只能得到87%的代码,因为“带有非正参数的加法参数什么也没做。我该如何解决呢?我尝试了更多的方法,但是我什至无法解决此错误在同学的帮助下 说明是: 对于此分配,您将创建一个存储分数的类。
昨天,我尝试以一种方式执行此操作...今天我尝试另一种方式,但仍然卡住了。我必须找到一种使用整数除法和取模来做到这一点的方法。这是我的代码,后面是错误消息。 public int evaluateFr
我这里有一些特殊字符: http://209.141.56.244/test/char.php 但是当我在这里通过 ajax 抓取这个文件时,它们显示为 back ?标记: http://209.14
我得到了一张图表 G与 n顶点,标记自 1至 n (2 a_1 -> a_2 -> ... a_k -> n A然后将占据 1 的所有“子节点”节点, a_1 , ... a_x (其中 x = ce
我有一个看起来像这样的 mongodb 集合: db.scores.insert({"name": "Bob", value: 96.3, timeStamp:'2010-9-27 9:32:00'}
我试图更好地了解 lucene 如何对我的搜索进行评分,以便我可以对我的搜索配置或文档内容进行必要的调整。 以下是分数明细的一部分。 产品: 0.34472802 = queryWeight,
在我网站上用户生成的帖子下,我有一个类似亚马逊的评级系统: Was this review helpful to you: Yes | No 如果有投票,我会在该行上方显示结果,如下所示:
对于我的项目,我需要找出哪些搜索结果被视为“良好”匹配。目前,分数因查询而异,因此需要以某种方式对它们进行标准化。标准化分数将允许选择高于给定阈值的结果。 我为 Lucene 找到了几个解决方案: h
我有一个由 57 个变量组成的数据文件。由于测量水平不均匀,我想将其中的大约 12 个转换为 z 分数。我查找了互联网资源和帮助文件。一个互联网资源建议我需要 Rbasic 包(不存在)。我使用了 s
我对 SOLR 核心运行查询并使用过滤器限制结果例如 fq: {!frange l=0.7 }query($q)。我知道 SOLR 分数不有绝对意义,但是0.7(只是一个例子)是计算出来的基于用户输入
我想找到不同的方法来解决我遇到的现实生活问题:想象一下进行一场比赛或一场游戏,在此期间用户收集积分。您必须构建一个查询来显示具有最佳“n”分数的用户列表。 我举一个例子来澄清。假设这是用户表,其中包含
我有很多 wiki 页面,我想训练一个分类器,看看是否可以通过一些特征(包括段落的位置和段落的 lucene 分数)来确定重点搜索的位置。我尝试将每个段落视为一个文档,这使我能够获得每个段落的 luc
我是 R 编程新手,在使用一些基本代码时遇到问题。 我有一个包含以下列的数据框:条件(因子)、用户(因子)和灵敏度(int)。对于每个用户有 20 个敏感项。我需要为每个用户创建一个具有标准化敏感度分
我是一名优秀的程序员,十分优秀!