gpt4 book ai didi

python-2.7 - 如何使用 python scikit-learn 执行欠采样(正确的方式)?

转载 作者:行者123 更新时间:2023-11-30 08:41:20 25 4
gpt4 key购买 nike

我正在尝试使用 python scikit learn 对多数类执行欠采样。目前,我的代码查找少数类的 N,然后尝试对多数类的完全相同的 N 进行欠采样。结果测试数据和训练数据都具有 1:1 的分布。但我真正想要的是仅在训练数据上执行此 1:1 分布,但在测试数据中的原始分布上进行测试。

我不太确定如何执行后者,因为中间有一些字典向量化,这让我感到困惑。

# Perform undersampling majority group
minorityN = len(df[df.ethnicity_scan == 1]) # get the total count of low-frequency group
minority_indices = df[df.ethnicity_scan == 1].index
minority_sample = df.loc[minority_indices]

majority_indices = df[df.ethnicity_scan == 0].index
random_indices = np.random.choice(majority_indices, minorityN, replace=False) # use the low-frequency group count to randomly sample from high-frequency group
majority_sample = data.loc[random_indices]

merged_sample = pd.concat([minority_sample, majority_sample], ignore_index=True) # merging all the low-frequency group sample and the new (randomly selected) high-frequency sample together
df = merged_sample
print 'Total N after undersampling:', len(df)

# Declaring variables
X = df.raw_f1.values
X2 = df.f2.values
X3 = df.f3.values
X4 = df.f4.values
y = df.outcome.values

# Codes skipped ....
def feature_noNeighborLoc(locString):
pass
my_dict16 = [{'location': feature_noNeighborLoc(feature_full_name(i))} for i in X4]
# Codes skipped ....

# Dict vectorization
all_dict = []
for i in range(0, len(my_dict)):
temp_dict = dict(
my_dict[i].items() + my_dict2[i].items() + my_dict3[i].items() + my_dict4[i].items()
+ my_dict5[i].items() + my_dict6[i].items() + my_dict7[i].items() + my_dict8[i].items()
+ my_dict9[i].items() + my_dict10[i].items()
+ my_dict11[i].items() + my_dict12[i].items() + my_dict13[i].items() + my_dict14[i].items()
+ my_dict19[i].items()
+ my_dict16[i].items() # location feature
)
all_dict.append(temp_dict)

newX = dv.fit_transform(all_dict)

X_train, X_test, y_train, y_test = cross_validation.train_test_split(newX, y, test_size=testTrainSplit)

# Fitting X and y into model, using training data
classifierUsed2.fit(X_train, y_train)

# Making predictions using trained data
y_train_predictions = classifierUsed2.predict(X_train)
y_test_predictions = classifierUsed2.predict(X_test)

最佳答案

您想要对某个类别的训练样本进行二次采样,因为您需要一个对所有标签进行相同处理的分类器。

如果您想这样做而不是二次采样,您可以将分类器的“class_weight”参数的值更改为“平衡”(或某些分类器的“自动”),这可以完成您想要做的工作。

您可以阅读 LogisticRegression 分类器的文档作为示例。请注意“class_weight”参数的描述here .

通过将该参数更改为“平衡”,您将不再需要进行子采样。

关于python-2.7 - 如何使用 python scikit-learn 执行欠采样(正确的方式)?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34831676/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com