- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
为什么x需要是 float ?既然我传入了一个int类型的列表,为什么它不能是int?
代码:
x = tf.placeholder(tf.float32, shape=[None, 1]) # Why must this be a float?
y = tf.placeholder(tf.int32, shape=[None, 2])
with tf.name_scope("network"):
layer1 = tf.layers.dense(x, 100, activation=tf.nn.relu, name="hidden_layer")
output = tf.layers.dense(layer1, 2, name="output_layer")
with tf.name_scope("loss"):
xentropy = tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=output)
loss = tf.reduce_mean(xentropy, name="loss")
with tf.name_scope("train"):
optimizer = tf.train.AdamOptimizer()
training_op = optimizer.minimize(loss)
with tf.name_scope("eval"):
with tf.Session() as sess:
for i in range(1, 50):
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
sess.run(training_op, feed_dict={x: np.array(train_data).reshape([-1, 1]), y: label})
if i % 10 == 0:
saver.save(sess, "saved_models/testing")
print "Saved"
当我将其更改为 tf.int32 时,出现以下错误:
TypeError: Value passed to parameter 'features' has DataType int32 not in list of allowed values: float16, float32, float64
如果需要,我可以提供更多代码。
最佳答案
这是由于tf.nn.softmax_cross_entropy_with_logits
:
logits and labels must have the same shape [batch_size, num_classes] and the same dtype (either float16, float32, or float64).
我想您可以使用整数输入计算损失。然而,大多数时候,这种损失可以通过梯度下降最小化——就像你所做的那样——这意味着输入需要对实数进行编码才能获得任意更新。
问题是 tf.layers.dense
不会改变您的输入类型。因此,如果输入是整数,它将产生整数输出。 (至少如果激活与整数兼容,例如 relu
—— sigmoid
会引发错误)。
您可能想要做的是提供整数输入然后在tf.float32
中进行所有计算。为此,请先转换您的输入,然后再将其提供给dense
:
layer1 = tf.layers.dense(tf.to_float(x), 100, activation=tf.nn.relu, name="hidden_layer")
关于machine-learning - 为什么这个 tf.placeholder 必须是 float ?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44881147/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!