- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我一直在研究 MNIST 数字识别数据集,但我有点卡住了。我阅读了一些研究论文并实现了我所理解的一切。基本上我所做的是,我首先创建训练集和交叉验证集来评估我的分类器,然后在测试集和训练集上运行 PCA,之后使用 KNN 和 SVM 执行分类任务。我面临的主要问题是,我应该在所有数据集上运行 PCA,然后将训练集和交叉验证集分开,还是将它们分开,然后在交叉验证测试和训练集上单独运行 PCA。我很抱歉询问我已经尝试过的事情,因为我已经尝试了这两种情况,在第一种情况下,我的分类器表现出色,因为我猜 PCA 在创建调整我的结果的主要组件时使用测试数据集,并且可能是这是我的模型存在偏差的原因,在其他情况下,性能大约为 20% 到 30%,这是非常低的。所以我有点困惑如何改进我的模型,非常感谢任何帮助和指导,我已将我的代码粘贴在下面以供引用。
library(ggplot2)
library(e1071)
library(ElemStatLearn)
library(plyr)
library(class)
import.csv <- function(filename){
return(read.csv(filename, sep = ",", header = TRUE, stringsAsFactors = FALSE))
}
train.data <- import.csv("train.csv")
test.data <- train.data[30001:32000,]
train.data <- train.data[1:6000,]
#Performing PCA on the dataset to reduce the dimensionality of the data
get_PCA <- function(dataset){
dataset.features <- dataset[,!(colnames(dataset) %in% c("label"))]
features.unit.variance <- names(dataset[, sapply(dataset, function(v) var(v, na.rm=TRUE)==0)])
dataset.features <- dataset[,!(colnames(dataset) %in% features.unit.variance)]
pr.comp <- prcomp(dataset.features, retx = T, center = T, scale = T)
#finding the total variance contained in the principal components
prin_comp <- summary(pr.comp)
prin_comp.sdev <- data.frame(prin_comp$sdev)
#print(paste0("%age of variance contained = ", sum(prin_comp.sdev[1:500,])/sum(prin_comp.sdev)))
screeplot(pr.comp, type = "lines", main = "Principal Components")
num.of.comp = 50
red.dataset <- prin_comp$x
red.dataset <- red.dataset[,1:num.of.comp]
red.dataset <- data.frame(red.dataset)
return(red.dataset)
}
#Perform k-fold cross validation
do_cv_class <- function(df, k, classifier){
num_of_nn = gsub("[^[:digit:]]","",classifier)
classifier = gsub("[[:digit:]]","",classifier)
if(num_of_nn == "")
{
classifier = c("get_pred_",classifier)
}
else
{
classifier = c("get_pred_k",classifier)
num_of_nn = as.numeric(num_of_nn)
}
classifier = paste(classifier,collapse = "")
func_name <- classifier
output = vector()
size_distr = c()
n = nrow(df)
for(i in 1:n)
{
a = 1 + (((i-1) * n)%/%k)
b = ((i*n)%/%k)
size_distr = append(size_distr, b - a + 1)
}
row_num = 1:n
sampling = list()
for(i in 1:k)
{
s = sample(row_num,size_distr)
sampling[[i]] = s
row_num = setdiff(row_num,s)
}
prediction.df = data.frame()
outcome.list = list()
for(i in 1:k)
{
testSample = sampling[[i]]
train_set = df[-testSample,]
test_set = df[testSample,]
if(num_of_nn == "")
{
classifier = match.fun(classifier)
result = classifier(train_set,test_set)
confusion.matrix <- table(pred = result, true = test_set$label)
accuracy <- sum(diag(confusion.matrix)*100)/sum(confusion.matrix)
print(confusion.matrix)
outcome <- list(sample_ID = i, Accuracy = accuracy)
outcome.list <- rbind(outcome.list, outcome)
}
else
{
classifier = match.fun(classifier)
result = classifier(train_set,test_set)
print(class(result))
confusion.matrix <- table(pred = result, true = test_set$label)
accuracy <- sum(diag(confusion.matrix)*100)/sum(confusion.matrix)
print(confusion.matrix)
outcome <- list(sample_ID = i, Accuracy = accuracy)
outcome.list <- rbind(outcome.list, outcome)
}
}
return(outcome.list)
}
#Support Vector Machines with linear kernel
get_pred_svm <- function(train, test){
digit.class.train <- as.factor(train$label)
train.features <- train[,-train$label]
test.features <- test[,-test$label]
svm.model <- svm(train.features, digit.class.train, cost = 10, gamma = 0.0001, kernel = "radial")
svm.pred <- predict(svm.model, test.features)
return(svm.pred)
}
#KNN model
get_pred_knn <- function(train,test){
digit.class.train <- as.factor(train$label)
train.features <- train[,!colnames(train) %in% "label"]
test.features <- test[,!colnames(train) %in% "label"]
knn.model <- knn(train.features, test.features, digit.class.train)
return(knn.model)
}
================================================== =========================
最佳答案
将 PCA 视为应用于数据的转换。您需要保留两件事:
因此,需要对训练集应用PCA,保留变换数据,这是两条信息:
并对测试集应用相同的转换。
关于r - 在 MNIST 数字识别数据集上表现不佳,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24176410/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!