gpt4 book ai didi

java - 使用自己的 Java 代码在 WEKA 中获取风险预测

转载 作者:行者123 更新时间:2023-11-30 08:38:46 27 4
gpt4 key购买 nike

我已经检查了"Making predictions" WEKA 文档,它包含命令行和 GUI 预测的明确说明。

我想知道如何获得预测值,就像下面我使用Agrawal从GUI获得的预测值一样。我自己的 Java 代码中的数据集 ( weka.datagenerators.classifiers.classification.Agrawal ):

inst#,  actual,     predicted,  error,  prediction
1, 1:0, 2:1, +, 0.941
2, 1:0, 1:0, , 1
3, 1:0, 1:0, , 1
4, 1:0, 1:0, , 1
5, 1:0, 1:0, , 1
6, 1:0, 1:0, , 1
7, 1:0, 2:1, +, 0.941
8, 2:1, 2:1, , 0.941
9, 2:1, 2:1, , 0.941
10, 2:1, 2:1, , 0.941
1, 1:0, 1:0, , 1
2, 1:0, 1:0, , 1
3, 1:0, 1:0, , 1
<小时/>

即使it我也无法复制这个结果说:

Java

If you want to perform the classification within your own code, see the classifying instances section of this article, explaining the Weka API in general.

我去了link它说:

Classifying instances

In case you have an unlabeled dataset that you want to classify with your newly trained classifier, you can use the following code snippet. It loads the file /some/where/unlabeled.arff, uses the previously built classifier tree to label the instances, and saves the labeled data as /some/where/labeled.arff.

这不是我想要的情况,因为我只想对当前数据集建模的 k 倍交叉验证预测。

<小时/>

更新

predictions

public FastVector predictions()

Returns the predictions that have been collected.

Returns:

a reference to the FastVector containing the predictions that have been collected. This should be null if no predictions have been collected.

我找到了 predictions() Evaluation 类型对象的方法并使用代码:

Object[] preds = evaluation.predictions().toArray();
for(Object pred : preds) {
System.out.println(pred);
}

结果是:

...
NOM: 0.0 0.0 1.0 0.9466666666666667 0.05333333333333334
NOM: 0.0 0.0 1.0 0.8947368421052632 0.10526315789473684
NOM: 0.0 0.0 1.0 0.9934883720930232 0.0065116279069767444
NOM: 0.0 0.0 1.0 0.9466666666666667 0.05333333333333334
NOM: 0.0 0.0 1.0 0.9912575655682583 0.008742434431741762
NOM: 0.0 0.0 1.0 0.9934883720930232 0.0065116279069767444
...

这和上面的一样吗?

最佳答案

经过深入的谷歌搜索(并且因为 documentation provides minimal help )我终于找到了答案。

我希望这个明确的答案将来对其他人有所帮助。

  • 对于示例代码,我看到了问题 "How to print out the predicted class after cross-validation in WEKA"我很高兴能够解读这个不完整的答案,其中有些内容很难理解。

    这是我的代码,其工作方式与 GUI 的输出类似

    StringBuffer predictionSB = new StringBuffer();
    Range attributesToShow = null;
    Boolean outputDistributions = new Boolean(true);

    PlainText predictionOutput = new PlainText();
    predictionOutput.setBuffer(predictionSB);
    predictionOutput.setOutputDistribution(true);

    Evaluation evaluation = new Evaluation(data);
    evaluation.crossValidateModel(j48Model, data, numberOfFolds,
    randomNumber, predictionOutput, attributesToShow,
    outputDistributions);

    为了帮助您理解,我们需要实现 StringBuffer将被类型转换在 AbstractOutput 对象以便函数crossValidateModel能认出来。

    使用StringBuffer只会导致java.lang.ClassCastException使用 PlainText 时与问题中的类似没有StringBuffer将显示java.lang.IllegalStateException .

    谢谢ManChon U (Kevin)和他们的问题"How to identify the cross-evaluation result to its corresponding instance in the input data set?"让我了解这意味着什么:

    ... you just need a single addition argument that is a concrete subclass of weka.classifiers.evaluation.output.prediction.AbstractOutput. weka.classifiers.evaluation.output.prediction.PlainText is probably the one you want to use. Source

    ... Try creating a PlainText object, which extends AbstractOutput (called output for example) instance and calling output.setBuffer(forPredictionsPrinting) and passing that in instead of the buffer. Source

    这些实际上只是为了创建一个 PlainText对象,放置一个StringBuffer并使用它通过方法 setOutput(boolean) 调整输出以及其他。

    最后,要获得我们想要的预测,只需使用:

    System.out.println(predictionOutput.getBuffer());

    其中predictionOutput AbstractOutput 中的一个对象家庭( PlainTextCSVXML 等)。

  • 此外,evaluation.predictions()的结果与 WEKA GUI 中提供的不同。幸运的是,马克·霍尔在问题"Print out the predict class after cross-validation"中解释了这一点。

    Evaluation.predictions() returns a FastVector containing either NominalPrediction or NumericPrediction objects from the weka.classifiers.evaluation package. Calling Evaluation.crossValidateModel() with the additional AbstractOutput object results in the evaluation object printing the prediction/distribution information from Nominal/NumericPrediction objects to the StringBuffer in the format that you see in the Explorer or from the command line.

引用文献:

关于java - 使用自己的 Java 代码在 WEKA 中获取风险预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21424248/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com