gpt4 book ai didi

r - 使用 dtwclust 进行动态时间规整距离 (DTW) 的时间序列聚类

转载 作者:行者123 更新时间:2023-11-30 08:35:02 24 4
gpt4 key购买 nike

我正在尝试使用 dtwclust 包执行具有动态时间扭曲距离 (DTW) 的时间序列聚类。

我使用这个功能,

dtwclust(data = NULL, type = "partitional", k = 2L, method = "average",
distance = "dtw", centroid = "pam", preproc = NULL, dc = NULL,
control = NULL, seed = NULL, distmat = NULL, ...)

我将数据保存为列表,它们的长度不同。就像下面的例子,它是一个时间序列。

$a
[1] 0 0 0 0 2 3 6 7 8 9 11 13

$b
[1] 0 1 1 2 4 7 8 11 13 15 17 19 22 25 28 31 34 35

$c
[1] 1 2 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 7 7 8 8 9 10 10 12 14 15 17 19

$d
[1] 0 0 0 0 0 1 2 4 4 4

$e
[1] 0 1 1 3 5 6 9 12 14 17 19 20 22 24 28 31 32 34

现在,我的问题是

(1)我只能为距离选择 dtwdtw2sbd 以及 dbashapepam 作为我的质心(因为列表的长度不同)。但是,我不知道哪个距离和质心是正确的。

(2)我绘制了一些图表,但我不知道如何选择正确合理的图表。

k = 6,距离 = dtw,质心 = dba:

k = 4, distance = dtw, centroid = dba(簇中心似乎是有线的?)

我已经做了所有的组合,k从4到13...但我不知道如何选择正确的...

最佳答案

您不想“选择”参数,而是评估结果。因此,需要选择一个评价聚类的标准。您基本上可以改变距离和 k 等参数,然后使用损失函数评估聚类。一般来说,评估聚类有两种可能性:

外部评价:

您可以使用标签(未用于聚类,因此被视为外部标签)以假阳性、真阳性等形式计算准确度,最终将导致您得到 AUC measure

您的数据似乎没有标记,因此您无法计算任何准确性,这是最简单的方法。

内部评估:

或者,您可以尝试最大化簇内相似度(簇成员与特定簇的所有其他成员的平均距离)并最小化簇间相似度(簇成员与簇外所有元素的平均距离)。他自己的集群)。

欲了解更多信息,请访问:

http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

http://www.ims.uni-stuttgart.de/institut/mitarbeiter/schulte/theses/phd/algorithm.pdf

关于r - 使用 dtwclust 进行动态时间规整距离 (DTW) 的时间序列聚类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35051781/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com