- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这个用 python 定义的简单神经网络:
input_layer = tf.placeholder(tf.float32, shape=[1, 1, 8000, 1], name='input_layer')
# Convolutional Layer
conv = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[1,11],
padding="same",
strides=1,
activation=tf.nn.relu)
# Output layer
logits = tf.layers.dense(inputs=conv, units=5, name='logit')
结果如下图拓扑:
0 input_layer Placeholder
1 conv2d/kernel/Initializer/random_uniform/shape Const
2 conv2d/kernel/Initializer/random_uniform/min Const
3 conv2d/kernel/Initializer/random_uniform/max Const
4 conv2d/kernel/Initializer/random_uniform/RandomUniform RandomUniform
└─── Input0 ─ conv2d/kernel/Initializer/random_uniform/shape
5 conv2d/kernel/Initializer/random_uniform/sub Sub
└─── Input0 ─ conv2d/kernel/Initializer/random_uniform/max
└─── Input1 ─ conv2d/kernel/Initializer/random_uniform/min
6 conv2d/kernel/Initializer/random_uniform/mul Mul
└─── Input0 ─ conv2d/kernel/Initializer/random_uniform/RandomUniform
└─── Input1 ─ conv2d/kernel/Initializer/random_uniform/sub
7 conv2d/kernel/Initializer/random_uniform Add
└─── Input0 ─ conv2d/kernel/Initializer/random_uniform/mul
└─── Input1 ─ conv2d/kernel/Initializer/random_uniform/min
8 conv2d/kernel VariableV2
9 conv2d/kernel/Assign Assign
└─── Input0 ─ conv2d/kernel
└─── Input1 ─ conv2d/kernel/Initializer/random_uniform
10 conv2d/kernel/read Identity
└─── Input0 ─ conv2d/kernel
11 conv2d/bias/Initializer/zeros Const
12 conv2d/bias VariableV2
13 conv2d/bias/Assign Assign
└─── Input0 ─ conv2d/bias
└─── Input1 ─ conv2d/bias/Initializer/zeros
14 conv2d/bias/read Identity
└─── Input0 ─ conv2d/bias
15 conv2d/convolution/Shape Const
16 conv2d/convolution/dilation_rate Const
17 conv2d/convolution Conv2D
└─── Input0 ─ input_layer
└─── Input1 ─ conv2d/kernel/read
18 conv2d/BiasAdd BiasAdd
└─── Input0 ─ conv2d/convolution
└─── Input1 ─ conv2d/bias/read
19 conv2d/Relu Relu
└─── Input0 ─ conv2d/BiasAdd
20 logit/kernel/Initializer/random_uniform/shape Const
21 logit/kernel/Initializer/random_uniform/min Const
22 logit/kernel/Initializer/random_uniform/max Const
23 logit/kernel/Initializer/random_uniform/RandomUniform RandomUniform
└─── Input0 ─ logit/kernel/Initializer/random_uniform/shape
24 logit/kernel/Initializer/random_uniform/sub Sub
└─── Input0 ─ logit/kernel/Initializer/random_uniform/max
└─── Input1 ─ logit/kernel/Initializer/random_uniform/min
25 logit/kernel/Initializer/random_uniform/mul Mul
└─── Input0 ─ logit/kernel/Initializer/random_uniform/RandomUniform
└─── Input1 ─ logit/kernel/Initializer/random_uniform/sub
26 logit/kernel/Initializer/random_uniform Add
└─── Input0 ─ logit/kernel/Initializer/random_uniform/mul
└─── Input1 ─ logit/kernel/Initializer/random_uniform/min
27 logit/kernel VariableV2
28 logit/kernel/Assign Assign
└─── Input0 ─ logit/kernel
└─── Input1 ─ logit/kernel/Initializer/random_uniform
29 logit/kernel/read Identity
└─── Input0 ─ logit/kernel
30 logit/bias/Initializer/zeros Const
31 logit/bias VariableV2
32 logit/bias/Assign Assign
└─── Input0 ─ logit/bias
└─── Input1 ─ logit/bias/Initializer/zeros
33 logit/bias/read Identity
└─── Input0 ─ logit/bias
34 logit/Tensordot/transpose/perm Const
35 logit/Tensordot/transpose Transpose
└─── Input0 ─ conv2d/Relu
└─── Input1 ─ logit/Tensordot/transpose/perm
36 logit/Tensordot/Reshape/shape Const
37 logit/Tensordot/Reshape Reshape
└─── Input0 ─ logit/Tensordot/transpose
└─── Input1 ─ logit/Tensordot/Reshape/shape
38 logit/Tensordot/transpose_1/perm Const
39 logit/Tensordot/transpose_1 Transpose
└─── Input0 ─ logit/kernel/read
└─── Input1 ─ logit/Tensordot/transpose_1/perm
40 logit/Tensordot/Reshape_1/shape Const
41 logit/Tensordot/Reshape_1 Reshape
└─── Input0 ─ logit/Tensordot/transpose_1
└─── Input1 ─ logit/Tensordot/Reshape_1/shape
42 logit/Tensordot/MatMul MatMul
└─── Input0 ─ logit/Tensordot/Reshape
└─── Input1 ─ logit/Tensordot/Reshape_1
43 logit/Tensordot/shape Const
44 logit/Tensordot Reshape
└─── Input0 ─ logit/Tensordot/MatMul
└─── Input1 ─ logit/Tensordot/shape
45 logit/BiasAdd BiasAdd
└─── Input0 ─ logit/Tensordot
└─── Input1 ─ logit/bias/read
节点 36 和 44 之间的 reshape 操作的目的是什么?我正在使用 Snapdragon 神经处理引擎(SNPE),它不允许 reshape 操作。有没有办法在没有 reshape 操作的情况下表达这个模型?
最佳答案
所有这些reshape
操作都是由tf.tensordot
添加的,由 tf.layers.dense
使用对于高维输入(在您的情况下为 4D)。来自其documentation :
Note: if the inputs tensor has a rank greater than 2, then it is flattened prior to the initial matrix multiply by kernel.
The link到源代码。
如果您的环境不需要 reshape ,请尝试手动定义权重和偏差,并通过 tf.matmul
应用 dot
产品。
关于machine-learning - 使用 tf.layers 指定的神经网络插入不需要的 reshape 操作,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47139172/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!