- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 NLTK 和 Pandas 模块来尝试不同的方法来使 NLTK 的朴素贝叶斯正常工作,但我收到了“太多值无法解压”错误。
import pandas as pd
from pandas import DataFrame, Series
import numpy as np
import re
import nltk
### Remove cases with missing name or missing ethnicity information
def read_file():
data = pd.read_csv("C:\sample.csv", encoding="utf-8")
frame = DataFrame(data)
frame.columns = ["Name", "Gender"]
return frame
#read_file()
def gender_features(word):
return {'last_letter': word[-1]}
#gender_features()
frame = read_file()
featuresets = [(gender_features(n), gender) for (n, gender) in frame]
train_set, test_set = features[500:], featuresets[:500]
classifier = nltkNaiveBayesClassifier.train(train_set)
最佳答案
我怀疑您在使用 panadas.DataFrame
时试图做比名称分类更大的事情,因为 DataFrame
对象通常在您的 RAM 有限并且想要使迭代数据以提取特征时使用磁盘空间:
a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object. Like Series, DataFrame accepts many different kinds of input:
- Dict of 1D ndarrays, lists, dicts, or Series
- 2-D numpy.ndarray
- Structured or record ndarray
- A Series
- Another DataFrame
我建议您先阅读 pandas
教程来了解该库:http://pandas.pydata.org/pandas-docs/dev/tutorials.html
然后从http://www.nltk.org/book/ch06.html了解NLTK分类
<小时/>首先,访问 pandas.DataFrame
对象的方式存在一些问题。
要迭代数据帧的行,您应该这样做:
# Read file into pandas dataframe
df = DataFrame(pd.read_csv('sample.csv'))
df.columns = ['name', 'gender']
for index, row in df.iterrows():
print row['name'], row['gender']
接下来要训练分类器,您应该执行以下操作:
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
from nltk.corpus import names
from nltk.classify import NaiveBayesClassifier as nbc
# Create a sample.csv file
male_names = [','.join([i,'m']) for i in names.words('male.txt')]
female_names = [','.join([i,'m']) for i in names.words('female.txt')]
with open('sample.csv', 'w') as fout:
fout.write('\n'.join(male_names+female_names))
# Feature extractor function.
def gender_features(word):
return {'last_letter': word[-1]}
# Read file into pandas dataframe
df = DataFrame(pd.read_csv('sample.csv'))
df.columns = ['name', 'gender']
# Extract features.
featuresets = [(gender_features(name), gender) for index, (name, gender) in df.iterrows()]
# Split train and test set
train_set, test_set = featuresets[500:], featuresets[:500]
# Train a classifier
classifier = nbc.train(train_set)
# Test classifier on "Neo"
print classifier.classify(gender_features('Neo'))
[输出]:
m
关于pandas - 值太多,无法在 Python 中使用 NLTK 和 Pandas 解压,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27029020/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!