- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我使用 metrics=['accuracy']
编译了一个模型,并且我获得的值始终高于验证准确度 val_acc
。例如:
Epoch 19/20
53/53 [==============================] - 280s - loss: 0.3931 - acc: 0.8238 - val_loss: 0.5002 - val_acc: 0.7757
Epoch 20/20
53/53 [==============================] - 278s - loss: 0.3957 - acc: 0.8255 - val_loss: 0.5009 - val_acc: 0.7754
accuracy: 0.790697674418604
有人知道这两个值的计算方式有何不同吗?
更新
我使用的是 Keras 2.0.8。我所说的“准确度”是指最后一行准确度:0.790697674418604
。我没有给它提供测试集,所以我想知道它测试的是什么。
最佳答案
在训练期间,样本再次分为 2 个内部子集。一个用于实际训练,另一个用于每个时期后的验证。分割比例可以通过参数“validation_split”控制,如下所示(来自 Keras 的示例)
h = model.fit(X_train, Y_train, batch_size=200, epochs=50, verbose=2, validation_split=0.2)
现在,进入日志,“acc”指的是训练内容的准确性。 'val_acc' 指验证集。请注意,val_acc 指的是训练期间未向网络显示的一组样本,因此指的是模型在训练集之外的情况下一般的工作情况。
验证准确度低于准确度是很常见的。但理想情况下,您应该努力将这些值(value)观保持在同一水平。如果验证准确度远低于准确度,则肯定是过度拟合(如上例所示) - 准确度为 84,验证准确度为 77。
编辑:关于日志最后一行中的“准确性”,即所有时期针对测试数据集运行后网络的准确性。这通常比准确度更接近“val_acc”(如上面的情况,它是 79)。这只是意味着在上一个时期运行中,测试数据中的样本比验证数据中的样本更接近(请记住,这两个集合都不用于训练)
无论如何,我认为您应该进行调整以确保“acc”和“val_acc”以及最终的“准确性”彼此更加接近
关于machine-learning - Keras:为什么 'accuracy' 高于 'val_acc' ?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51335133/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!