- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在数值和连续数据上训练基于 tensorflow 的随机森林回归。
当我尝试拟合我的估算器时,它以以下消息开头:
INFO:tensorflow:Constructing forest with params =
INFO:tensorflow:{'num_trees': 10, 'max_nodes': 1000, 'bagging_fraction': 1.0, 'feature_bagging_fraction': 1.0, 'num_splits_to_consider': 10, 'max_fertile_nodes': 0, 'split_after_samples': 250, 'valid_leaf_threshold': 1, 'dominate_method': 'bootstrap', 'dominate_fraction': 0.99, 'model_name': 'all_dense', 'split_finish_name': 'basic', 'split_pruning_name': 'none', 'collate_examples': False, 'checkpoint_stats': False, 'use_running_stats_method': False, 'initialize_average_splits': False, 'inference_tree_paths': False, 'param_file': None, 'split_name': 'less_or_equal', 'early_finish_check_every_samples': 0, 'prune_every_samples': 0, 'feature_columns': [_NumericColumn(key='Average_Score', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), _NumericColumn(key='lat', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None), _NumericColumn(key='lng', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None)], 'num_classes': 1, 'num_features': 2, 'regression': True, 'bagged_num_features': 2, 'bagged_features': None, 'num_outputs': 1, 'num_output_columns': 2, 'base_random_seed': 0, 'leaf_model_type': 2, 'stats_model_type': 2, 'finish_type': 0, 'pruning_type': 0, 'split_type': 0}
然后该过程崩溃,我收到以下值错误:
<小时/>ValueError: Shape must be at least rank 2 but is rank 1 for 'concat' (op: 'ConcatV2') with input shapes: [?], [?], [?], [] and with computed input tensors: input[3] = <1>.
这是我正在使用的代码:
import tensorflow as tf
from tensorflow.contrib.tensor_forest.python import tensor_forest
from tensorflow.python.ops import resources
import pandas as pd
from tensorflow.contrib.tensor_forest.client import random_forest
from tensorflow.python.estimator.inputs import numpy_io
import numpy as np
def getFeatures():
Average_Score = tf.feature_column.numeric_column('Average_Score')
lat = tf.feature_column.numeric_column('lat')
lng = tf.feature_column.numeric_column('lng')
return [Average_Score,lat ,lng]
# Import hotel data
Hotel_Reviews=pd.read_csv("./DataMining/Hotel_Reviews.csv")
Hotel_Reviews_Filtered=Hotel_Reviews[(Hotel_Reviews.lat.notnull() |
Hotel_Reviews.lng.notnull())]
Hotel_Reviews_Filtered_Target = Hotel_Reviews_Filtered[["Reviewer_Score"]]
Hotel_Reviews_Filtered_Features = Hotel_Reviews_Filtered[["Average_Score","lat","lng"]]
#Preprocess the data
x=Hotel_Reviews_Filtered_Features.to_dict('list')
for key in x:
x[key] = np.array(x[key])
y=Hotel_Reviews_Filtered_Target.values
#specify params
params = tf.contrib.tensor_forest.python.tensor_forest.ForestHParams(
feature_colums= getFeatures(),
num_classes=1,
num_features=2,
regression=True,
num_trees=10,
max_nodes=1000)
#build the graph
graph_builder_class = tensor_forest.RandomForestGraphs
est=random_forest.TensorForestEstimator(
params, graph_builder_class=graph_builder_class)
#define input function
train_input_fn = numpy_io.numpy_input_fn(
x=x,
y=y,
batch_size=1000,
num_epochs=1,
shuffle=True)
est.fit(input_fn=train_input_fn, steps=500)
<小时/>
变量 x 是形状为 (512470,) 的 numpy 数组列表:
{'Average_Score': array([ 7.7, 7.7, 7.7, ..., 8.1, 8.1, 8.1]),
'lat': array([ 52.3605759, 52.3605759, 52.3605759, ..., 48.2037451,
48.2037451, 48.2037451]),
'lng': array([ 4.9159683, 4.9159683, 4.9159683, ..., 16.3356767,
16.3356767, 16.3356767])}
变量 y 是形状为 (512470,1) 的 numpy 数组:
array([[ 2.9],
[ 7.5],
[ 7.1],
...,
[ 2.5],
[ 8.8],
[ 8.3]])
最佳答案
使用 ndmin=2 强制 x 中的每个数组为 2 维。然后形状应该匹配并且连接应该能够操作。
关于python-3.x - 在 Tensorflow 上训练随机森林,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48075778/
问题故障解决记录 -- Java RMI Connection refused to host: x.x.x.x .... 在学习JavaRMI时,我遇到了以下情况 问题原因:可
我正在玩 Rank-N-type 并尝试输入 x x .但我发现这两个函数可以以相同的方式输入,这很不直观。 f :: (forall a b. a -> b) -> c f x = x x g ::
这个问题已经有答案了: How do you compare two version Strings in Java? (31 个回答) 已关闭 8 年前。 有谁知道如何在Java中比较两个版本字符串
这个问题已经有答案了: How do the post increment (i++) and pre increment (++i) operators work in Java? (14 个回答)
下面是带有 -n 和 -r 选项的 netstat 命令的输出,其中目标字段显示压缩地址 (127.1/16)。我想知道 netstat 命令是否有任何方法或选项可以显示整个目标 IP (127.1.
我知道要证明 : (¬ ∀ x, p x) → (∃ x, ¬ p x) 证明是: theorem : (¬ ∀ x, p x) → (∃ x, ¬ p x) := begin intro n
x * x 如何通过将其存储在“auto 变量”中来更改?我认为它应该仍然是相同的,并且我的测试表明类型、大小和值显然都是相同的。 但即使 x * x == (xx = x * x) 也是错误的。什么
假设,我们这样表达: someIQueryable.Where(x => x.SomeBoolProperty) someIQueryable.Where(x => !x.SomeBoolProper
我有一个字符串 1234X5678 我使用这个正则表达式来匹配模式 .X|..X|X. 我得到了 34X 问题是为什么我没有得到 4X 或 X5? 为什么正则表达式选择执行第二种模式? 最佳答案 这里
我的一个 friend 在面试时遇到了这个问题 找到使该函数返回真值的 x 值 function f(x) { return (x++ !== x) && (x++ === x); } 面试官
这个问题在这里已经有了答案: 10年前关闭。 Possible Duplicate: Isn't it easier to work with foo when it is represented b
我是 android 的新手,我一直在练习开发一个针对 2.2 版本的应用程序,我需要帮助了解如何将我的应用程序扩展到其他版本,即 1.x、2.3.x、3 .x 和 4.x.x,以及一些针对屏幕分辨率
为什么案例 1 给我们 :error: TypeError: x is undefined on line... //case 1 var x; x.push(x); console.log(x);
代码优先: # CASE 01 def test1(x): x += x print x l = [100] test1(l) print l CASE01 输出: [100, 100
我正在努力温习我的大计算。如果我有将所有项目移至 'i' 2 个空格右侧的函数,我有一个如下所示的公式: (n -1) + (n - 2) + (n - 3) ... (n - n) 第一次迭代我必须
给定 IP 字符串(如 x.x.x.x/x),我如何或将如何计算 IP 的范围最常见的情况可能是 198.162.1.1/24但可以是任何东西,因为法律允许的任何东西。 我要带198.162.1.1/
在我作为初学者努力编写干净的 Javascript 代码时,我最近阅读了 this article当我偶然发现这一段时,关于 JavaScript 中的命名空间: The code at the ve
我正在编写一个脚本,我希望避免污染 DOM 的其余部分,它将是一个用于收集一些基本访问者分析数据的第 3 方脚本。 我通常使用以下内容创建一个伪“命名空间”: var x = x || {}; 我正在
我尝试运行我的test_container_services.py套件,但遇到了以下问题: docker.errors.APIError:500服务器错误:内部服务器错误(“ b'{” message
是否存在这两个 if 语句会产生不同结果的情况? if(x as X != null) { // Do something } if(x is X) { // Do something } 编
我是一名优秀的程序员,十分优秀!