- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
Labele-6ren">
当我尝试从矢量转换器的输出创建标记点时,我面临以下问题:
val realout = output.select("label","features").rdd.map(row => LabeledPoint
row.getAs[Double]("label"),
row.getAs[org.apache.spark.mllib.linalg.SparseVector]("features")
))
我收到的错误是:
enter [error] (run-main-0) org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 13.0 failed 1 times, most recent failure: Lost task 0.0 in stage 13.0 (TID 13, localhost): java.lang.ClassCastException: org.apache.spark.ml.linalg.SparseVector cannot be cast to org.apache.spark.mllib.linalg.Vector
[error] at DataCleaning$$anonfun$1.apply(DataCleaning.scala:107
[error] at DataCleaning$$anonfun$1.apply(DataCleaning.scala:105)
[error]
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
[error]
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:462
[error]
atorg.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:213)
我检查了链接 1 中提供的解决方案这解释了 Spark 2.0.0 中向量的转换,但面临如下所述的编译错误,
object linalg is not a member of package org.apache.spark.ml
请帮忙。谢谢!
最佳答案
org.apache.spark.mllib.linalg.SparseVector
中有一个静态方法将新的 linalg 类型转换为 spark.mllib
类型名为 fromML
。它可用于将 ML 稀疏向量转换为 MLlib 稀疏向量。请记住,它仅复制引用。
您可以按如下方式使用它:
val realout : RDD[LabeledPoint] = features1.rdd.map(row => LabeledPoint(row.getAs[Double]("label"),
SparseVector.fromML(row.getAs[org.apache.spark.ml.linalg.SparseVector]("features"))))
请参阅 Spark 文档:https://spark.apache.org/docs/2.0.1/api/java/org/apache/spark/mllib/linalg/SparseVector.html
附注-:本文档直接针对 Java,但我的示例代码是 Scala。但是,它没有问题,因为 Scala 与 Java 兼容。这意味着您可以从另一种语言的方法中调用另一种语言的方法。
关于scala - 如何将 ML 稀疏向量类型的变量转换为 MLlib 稀疏向量类型?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40555453/
我在服务器上 checkout 了一个 git 存储库。该存储库过去在根目录下包含所有相关文件,但我必须进行一些更改,现在我有两个文件夹,src 和 dist,我想跟踪这两个文件夹. 我遇到的问题是,
我很难弄清楚 VkDescriptorSetLayoutBinding::binding 的任何用例,这是结构: struct VkDescriptorSetLayoutBinding { u
Python中能否有效获取稀疏向量的范数? 我尝试了以下方法: from scipy import sparse from numpy.linalg import norm vector1 = spa
我正在尝试找出为什么这段代码不对数组进行排序... 任意向量。 x = array([[3, 2, 4, 5, 7, 4, 3, 4, 3, 3, 1, 4, 6, 3, 2, 4, 3, 2]])
有谁知道如何压缩(编码)稀疏 vector ?稀疏 vector 表示有许多“0”的 1xN 矩阵。 例如 10000000000001110000000000000000100000000 上面是稀
我使用稀疏高斯过程进行 Rasmussen 回归。[http://www.tsc.uc3m.es/~miguel/downloads.php][1] 预测平均值的语法是: [~, mu_1, ~, ~
我在朴素贝叶斯分类器中使用 Mahout API。其中一个功能是 SparseVectorsFromSequenceFiles虽然我已经尝试过旧的谷歌搜索,但我仍然不明白什么是稀疏 vector 。最
我正在尝试将JavaScript稀疏数组映射到C#表示形式。 建议这样做的方法是什么? 它正在考虑使用一个字典,该字典包含在原始数组中包含值的原始词列表。 还有其他想法吗? 谢谢! 最佳答案 注意 针
如果我想求解一个完整上三角系统,我可以调用linsolve(A,b,'UT')。然而,这目前不支持稀疏矩阵。我该如何克服这个问题? 最佳答案 UT 和 LT 系统是最容易解决的系统之一。读一读on t
我有一个带有 MultiIndex 的 Pandas DataFrame。 MultiIndex 的值在 (0,0) 到 (1000,1000) 范围内,该列有两个字段 p 和 q. 但是,DataF
我目前正在实现一个小型有限元模拟。使用 Python/Numpy,我正在寻找一种有效的方法来创建全局刚度矩阵: 1)我认为应该使用coo_matrix()从较小的单元刚度矩阵创建稀疏矩阵。但是,我可以
a , b是 1D numpy ndarray与整数数据类型具有相同的大小。 C是一个 2D scipy.sparse.lil_matrix . 如果索引[a, b]包含重复索引,C[a, b] +=
我有一个大的、连通的、稀疏的邻接表形式的图。我想找到两个尽可能远的顶点,即 diameter of the graph以及实现它的两个顶点。 对于不同的应用程序,我对无向和有向情况下的这个问题都很感兴
上下文:我将 Eigen 用于人工神经网络,其中典型维度为每层约 1000 个节点。所以大部分操作是将大小为 ~(1000,1000) 的矩阵 M 与大小为 1000 的 vector 或一批 B v
我有一些大小合适的矩阵 (2000*2000),我希望在矩阵的元素中有符号表达式 - 即 .9**b + .8**b + .7**b ... 是一个元素的例子。矩阵非常稀疏。 我通过添加中间计算来创建
在 R 或 C++ 中是否有一种快速填充(稀疏)矩阵的方法: A, B, 0, 0, 0 C, A, B, 0, 0 0, C, A, B, 0 0, 0, C, A, B 0, 0, 0, C, A
我有一个大的稀疏 numpy/scipy 矩阵,其中每一行对应于高维空间中的一个点。我想进行以下类型的查询: 给定一个点P(矩阵中的一行)和一个距离epsilon,找到与epsilon距离最大的所有点
假设我有一个 scipy.sparse.csr_matrix 代表下面的值 [[0 0 1 2 0 3 0 4] [1 0 0 2 0 3 4 0]] 我想就地计算非零值的累积和,这会将数组更改为:
我了解如何在 Git 中配置稀疏 checkout ,但我想知道是否可以消除前导目录。例如,假设我有一个 Git 存储库,其文件夹结构如下: 文件夹1/foo 文件夹2/foo/bar/stuff 文
根据 this thread , Git 中的排除 sparse-checkout feature应该实现。是吗? 假设我有以下结构: papers/ papers/... presentations
我是一名优秀的程序员,十分优秀!