gpt4 book ai didi

machine-learning - Tensorflow 中的 KNN - 使用图来预测未见过的数据

转载 作者:行者123 更新时间:2023-11-30 08:31:16 25 4
gpt4 key购买 nike

基于以下 Tensorflow 中的 KNN 示例 - 使用图形“预测”某些未见数据的标签的最佳方法是什么?

from __future__ import print_function

import numpy as np
import tensorflow as tf

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

# In this example, we limit mnist data
Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
Xte, Yte = mnist.test.next_batch(200) #200 for testing

# tf Graph Input
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])

# Nearest Neighbor calculation using L1 Distance
# Calculate L1 Distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))), reduction_indices=1)
# Prediction: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)

accuracy = 0.

# Initializing the variables
init = tf.global_variables_initializer()

# Launch the graph
with tf.Session() as sess:
sess.run(init)

# loop over test data
for i in range(len(Xte)):
# Get nearest neighbor
nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i, :]})
# Get nearest neighbor class label and compare it to its true label
print("Test", i, "Prediction:", np.argmax(Ytr[nn_index]), \
"True Class:", np.argmax(Yte[i]))
# Calculate accuracy
if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]):
accuracy += 1./len(Xte)
print("Done!")
print("Accuracy:", accuracy)

最佳答案

您可以通过将这些行附加到“with tf.Session() as sess:”内的末尾来完成此操作。

# Generate new (unseen) data
X, y = mnist.test.next_batch(1)

# Compute index of new data
nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: X[0, :]})

# Print the computed prediction
print("Test", i,
"Prediction:", np.argmax(Ytr[nn_index]),
"True Class:", np.argmax(y[0]))

关于machine-learning - Tensorflow 中的 KNN - 使用图来预测未见过的数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44803133/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com