- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
stackoverflow上类似问题的答案建议更改实例SVR()中的参数值,但我不明白如何处理它们。
这是我正在使用的代码:
import json
import numpy as np
from sklearn.svm import SVR
f = open('training_data.txt', 'r')
data = json.loads(f.read())
f.close()
f = open('predict_py.txt', 'r')
data1 = json.loads(f.read())
f.close()
features = []
response = []
predict = []
for row in data:
a = [
row['star_power'],
row['view_count'],
row['like_count'],
row['dislike_count'],
row['sentiment_score'],
row['holidays'],
row['clashes'],
]
features.append(a)
response.append(row['collection'])
for row in data1:
a = [
row['star_power'],
row['view_count'],
row['like_count'],
row['dislike_count'],
row['sentiment_score'],
row['holidays'],
row['clashes'],
]
predict.append(a)
X = np.array(features).astype(float)
Y = np.array(response).astype(float)
predict = np.array(predict).astype(float)
svm = SVR()
svm.fit(X,Y)
print('svm prediction')
svm_pred = svm.predict(predict)
print(svm_pred)
这是我在代码中使用的两个文本文件的链接
输出:
svm prediction
[ 36.07 36.07 36.07 36.07 36.07 36.07 36.07 36.07 36.07 36.07
36.07 36.07 36.07]
根据要求添加两个文本文件的示例:
1)training_data.txt:
[{"star_power":"1300","view_count":"50602729","like_count":"348059","dislike_count":"31748","holidays":"1","clashes":"0","sentiment_score":"0.32938596491228","collection":"383"},{"star_power":"1700","view_count":"36012808","like_count":"205694","dislike_count":"20130","holidays":"0","clashes":"0","sentiment_score":"0.1130303030303","collection":"300.68"},{"star_power":"0","view_count":"23892902","like_count":"86380","dislike_count":"4426","holidays":"0","clashes":"0","sentiment_score":"0.16004079254079","collection":"188.72"},{"star_power":"0","view_count":"27177685","like_count":"374671","dislike_count":"10372","holidays":"0","clashes":"0","sentiment_score":"0.16032407407407","collection":"132.85"},{"star_power":"500","view_count":"7481738","like_count":"42734","dislike_count":"1885","holidays":"0","clashes":"0","sentiment_score":"0.38622493734336","collection":"128.45"},{"star_power":"400","view_count":"16895259","like_count":"99158","dislike_count":"4188","holidays":"0","clashes":"0","sentiment_score":"0.22791203703704","collection":"127.48"},{"star_power":"200","view_count":"16646480","like_count":"63472","dislike_count":"13652","holidays":"1","clashes":"1","sentiment_score":"0.16873480902778","collection":"112.14"},{"star_power":"400","view_count":"18717042","like_count":"67497","dislike_count":"14165","holidays":"0","clashes":"0","sentiment_score":"0.30881006493506","collection":"109.14"}]
2)predict_py.txt
[{"star_power":"0","view_count":"3717403","like_count":"13399","dislike_count":"909","sentiment_score":"0.154167","holidays":"0","clashes":"0"},{"star_power":"0","view_count":"1640896","like_count":"2923","dislike_count":"328","sentiment_score":"0.109112","holidays":"0","clashes":"0"},{"star_power":"100","view_count":"14723084","like_count":"95088","dislike_count":"9816","sentiment_score":"0.352344","holidays":"0","clashes":"0"},{"star_power":"0","view_count":"584922","like_count":"4032","dislike_count":"212","sentiment_score":"0.3495","holidays":"0","clashes":"0"},{"star_power":"0","view_count":"14826843","like_count":"94788","dislike_count":"4169","sentiment_score":"0.208472","holidays":"0","clashes":"0"},{"star_power":"0","view_count":"1866184","like_count":"2750","dislike_count":"904","sentiment_score":"0.1275","holidays":"0","clashes":"0"},{"star_power":"200","view_count":"22006916","like_count":"184780","dislike_count":"13796","sentiment_score":"0.183611","holidays":"0","clashes":"0"},{"star_power":"0","view_count":"2645992","like_count":"4698","dislike_count":"1874","sentiment_score":"0.185487","holidays":"0","clashes":"0"},{"star_power":"0","view_count":"13886030","like_count":"116879","dislike_count":"6608","sentiment_score":"0.243479","holidays":"0","clashes":"0"},{"star_power":"0","view_count":"3102123","like_count":"36790","dislike_count":"769","sentiment_score":"0.065651","holidays":"0","clashes":"0"},{"star_power":"300","view_count":"16469439","like_count":"110054","dislike_count":"17892","sentiment_score":"0.178432","holidays":"0","clashes":"0"},{"star_power":"0","view_count":"6353017","like_count":"81236","dislike_count":"2154","sentiment_score":"0.0480556","holidays":"0","clashes":"0"},{"star_power":"0","view_count":"8679597","like_count":"89531","dislike_count":"6923","sentiment_score":"0.152083","holidays":"0","clashes":"0"}]
有什么建议吗?谢谢。
最佳答案
更改代码以标准化数据。
from sklearn.preprocessing import RobustScaler
rbX = RobustScaler()
X = rbX.fit_transform(X)
rbY = RobustScaler()
Y = rbY.fit_transform(Y)
然后执行fit()
svm = SVR()
svm.fit(X,Y)
预测时,仅根据rbX对预测
进行变换。
svm_pred = svm.predict(rbX.transform(predict))
现在,svm_pred
已采用标准化形式。您希望预测的 Y 具有正确的形式,因此根据 rbY 对 svm_pred
进行逆变换。
svm_pred = rbY.inverse_transform(svm_pred)
然后打印svm_pred
。一定会得到满意的结果。
关于Python (sklearn) - 为什么我对 SVR 中的每个测试元组都得到相同的预测?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42570325/
我正在使用 R 预测包拟合模型,如下所示: fit <- auto.arima(df) plot(forecast(fit,h=200)) 打印原始数据框和预测。当 df 相当大时,这
我正在尝试预测自有住房的中位数,这是一个行之有效的例子,给出了很好的结果。 https://heuristically.wordpress.com/2011/11/17/using-neural-ne
type="class"函数中的type="response"和predict有什么区别? 例如: predict(modelName, newdata=testData, type = "class
我有一个名为 Downloaded 的文件夹,其中包含经过训练的 CNN 模型必须对其进行预测的图像。 下面是导入图片的代码: import os images = [] for filename i
关于预测的快速问题。 我尝试预测的值是 0 或 1(它设置为数字,而不是因子),因此当我运行随机森林时: fit , data=trainData, ntree=50) 并预测: pred, data
使用 Python,我尝试使用历史销售数据来预测产品的 future 销售数量。我还试图预测各组产品的这些计数。 例如,我的专栏如下所示: Date Sales_count Department It
我是 R 新手,所以请帮助我了解问题所在。我试图预测一些数据,但预测函数返回的对象(这是奇怪的类(因子))包含低数据。测试集大小为 5886 obs。 160 个变量,当预测对象长度为 110 时..
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 6 年前。 Improve this qu
下面是我的神经网络代码,有 3 个输入和 1 个隐藏层和 1 个输出: #Data ds = SupervisedDataSet(3,1) myfile = open('my_file.csv','r
我正在开发一个 Web 应用程序,它具有全文搜索功能,可以正常运行。我想对此进行改进并向其添加预测/更正功能,这意味着如果用户输入错误或结果为 0,则会查询该输入的更正版本,而不是查询结果。基本上类似
我对时间序列还很陌生。 这是我正在处理的数据集: Date Price Location 0 2012-01-01 1771.0
我有许多可变长度的序列。对于这些,我想训练一个隐马尔可夫模型,稍后我想用它来预测(部分)序列的可能延续。到目前为止,我已经找到了两种使用 HMM 预测 future 的方法: 1) 幻觉延续并获得该延
我正在使用 TensorFlow 服务提供初始模型。我在 Azure Kubernetes 上这样做,所以不是通过更标准和有据可查的谷歌云。 无论如何,这一切都在起作用,但是我感到困惑的是预测作为浮点
我正在尝试使用 Amazon Forecast 进行一些测试。我现在尝试了两个不同的数据集,它们看起来像这样: 13,2013-03-31 19:25:00,93.10999 14,2013-03-3
使用 numpy ndarray大多数时候我们不需要担心内存布局的问题,因为结果并不依赖于它。 除非他们这样做。例如,考虑这种设置 3x2 矩阵对角线的稍微过度设计的方法 >>> a = np.zer
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我正在 R 中使用 GLMM,其中混合了连续变量和 calcategories 变量,并具有一些交互作用。我使用 MuMIn 中的 dredge 和 model.avg 函数来获取每个变量的效果估计。
我能够在 GUI 中成功导出分类器错误,但无法在命令行中执行此操作。有什么办法可以在命令行上完成此操作吗? 我使用的是 Weka 3.6.x。在这里,您可以右键单击模型,选择“可视化分类器错误”并从那
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我从 UCI 机器学习数据集库下载了一个巨大的文件。 (~300mb)。 有没有办法在将数据集加载到 R 内存之前预测加载数据集所需的内存? Google 搜索了很多,但我到处都能找到如何使用 R-p
我是一名优秀的程序员,十分优秀!