gpt4 book ai didi

r - 如何在R中计算决策树规则

转载 作者:行者123 更新时间:2023-11-30 08:28:38 25 4
gpt4 key购买 nike

我使用 RPart 来构建决策树。没有问题,我正在这样做。但是,我需要了解(或计算)树被分割了多少次?我的意思是,树有多少条规则(if-else 语句)?例如:

                  X
- -
if (a<9)- - if(a>=9)
Y H
-
if(b>2)-
Z

有 3 条规则。

当我写摘要(模型)时:

summary(model_dt)

Call:
rpart(formula = Alert ~ ., data = train)
n= 18576811

CP nsplit rel error xerror xstd
1 0.9597394 0 1.00000000 1.00000000 0.0012360956
2 0.0100000 1 0.04026061 0.05290522 0.0002890205

Variable importance
ip.src frame.protocols tcp.flags.ack tcp.flags.reset frame.len
20 17 17 17 16
ip.ttl
` 12

Node number 1: 18576811 observations, complexity param=0.9597394
predicted class=yes expected loss=0.034032 P(node) =1
class counts: 632206 1.79446e+07
probabilities: 0.034 0.966
left son=2 (627091 obs) right son=3 (17949720 obs)
Primary splits:
ip.src splits as LLLLLLLRRRLLRR ............ LLRLRLRRRRRRRRRRRRRRRR
improve=1170831.0, (0 missing)

ip.dts splits as LLLLLLLLLLLLLLLLLLLRLLLLLLLLLLL, improve=1013082.0, (0 missing)
tcp.flags.ctl < 1.5 to the right, improve=1007953.0, (2645 missing)
tcp.flags.syn < 1.5 to the right, improve=1007953.0, (2645 missing)
frame.len < 68 to the right, improve= 972871.3, (30 missing)
Surrogate splits:
frame.protocols splits as LLLLLLLLLLLLLLLLLLLRLLLLLLLLLLL, agree=0.995, adj=0.841, (0 split)
tcp.flags.ack < 1.5 to the right, agree=0.994, adj=0.836, (0 split)
tcp.flags.reset < 1.5 to the right, agree=0.994, adj=0.836, (0 split)
frame.len < 68 to the right, agree=0.994, adj=0.809, (0 split)
ip.ttl < 230.5 to the right, agree=0.987, adj=0.612, (0 split)

Node number 2: 627091 observations
predicted class=no expected loss=0.01621615 P(node) =0.03375666
class counts: 616922 10169
probabilities: 0.984 0.016

Node number 3: 17949720 observations
predicted class=yes expected loss=0.0008514896 P(node) =0.9662433
class counts: 15284 1.79344e+07
probabilities: 0.001 0.999

如果有人帮助我理解它,我将不胜感激

真诚的埃雷

最佳答案

通过了解如何返回树对象 ( ?rpart.object ),有几种方法可以实现此目的。

按照 kyphosis 中的第一个示例,我将展示在 R 中使用 ?rpart 数据集的两种方法:

fit <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)

选项 1

> tail(fit$cptable[, "nsplit"], 1)
3
4
> unname(tail(fit$cptable[, "nsplit"], 1)) ## or
[1] 4

来自 cptable ,其中包含有关给定大小的树的成本复杂性的信息

> fit$cptable
CP nsplit rel error xerror xstd
1 0.17647059 0 1.0000000 1.000000 0.2155872
2 0.01960784 1 0.8235294 1.176471 0.2282908
3 0.01000000 4 0.7647059 1.176471 0.2282908

据我所知,该表的最后一行将引用当前最大的树。如果根据 CP 将树修剪到特定大小,则该矩阵的最后一行将包含该大小的树的信息:

> fit2 <- prune(fit, cp = 0.02)
> fit2$cptable
CP nsplit rel error xerror xstd
1 0.1764706 0 1.0000000 1.000000 0.2155872
2 0.0200000 1 0.8235294 1.176471 0.2282908

选项 2

第二个选项是计算拟合模型的 <leaf> 组件的 var 列中 frame 的出现次数:

> fit$frame
var n wt dev yval complexity ncompete nsurrogate yval2.V1 yval2.V2
1 Start 81 81 17 1 0.17647059 2 1 1.00000000 64.00000000
2 Start 62 62 6 1 0.01960784 2 2 1.00000000 56.00000000
4 <leaf> 29 29 0 1 0.01000000 0 0 1.00000000 29.00000000
5 Age 33 33 6 1 0.01960784 2 2 1.00000000 27.00000000
10 <leaf> 12 12 0 1 0.01000000 0 0 1.00000000 12.00000000
11 Age 21 21 6 1 0.01960784 2 0 1.00000000 15.00000000
22 <leaf> 14 14 2 1 0.01000000 0 0 1.00000000 12.00000000
23 <leaf> 7 7 3 2 0.01000000 0 0 2.00000000 3.00000000
3 <leaf> 19 19 8 2 0.01000000 0 0 2.00000000 8.00000000
yval2.V3 yval2.V4 yval2.V5 yval2.nodeprob
1 17.00000000 0.79012346 0.20987654 1.00000000
2 6.00000000 0.90322581 0.09677419 0.76543210
4 0.00000000 1.00000000 0.00000000 0.35802469
5 6.00000000 0.81818182 0.18181818 0.40740741
10 0.00000000 1.00000000 0.00000000 0.14814815
11 6.00000000 0.71428571 0.28571429 0.25925926
22 2.00000000 0.85714286 0.14285714 0.17283951
23 4.00000000 0.42857143 0.57142857 0.08641975
3 11.00000000 0.42105263 0.57894737 0.23456790

该值 - 1 是分割数。为了进行计数,我们可以使用:

> grepl("^<leaf>$", as.character(fit$frame$var))
[1] FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
> sum(grepl("^<leaf>$", as.character(fit$frame$var))) - 1
[1] 4

我使用的正则表达式可能有点过大,但它意味着检查以 ( ^ ) 开头并以 ( $ ) "<leaf>" 结尾的字符串,即这是整个字符串。我使用 grepl()var 列上的匹配项作为逻辑向量返回,我们可以将 TRUE 求和并从中减去 1。由于 var 存储为因子,因此我在 grepl() 调用中将其转换为字符向量。

您还可以使用 grep() 来返回匹配项的索引并使用 length() 来对它们进行计数:

> grep("^<leaf>$", as.character(fit$frame$var))
[1] 3 5 7 8 9
> length(grep("^<leaf>$", as.character(fit$frame$var))) - 1
[1] 4

关于r - 如何在R中计算决策树规则,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23961445/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com