- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
背景:我正在使用 pyspark.ml 中的 RandomForestClassifier 进行简单的二元分类。在将数据提供给训练之前,我设法使用 VectorIndexer 通过提供参数 maxCategories 来确定特征是数字特征还是分类特征。
问题:即使我使用了 maxCategories 设置为 30 的 VectorIndexer,我在训练管道期间仍然收到错误:
An error occurred while calling o15371.fit.
: java.lang.IllegalArgumentException: requirement failed: DecisionTree requires maxBins (= 32) to be at least as large as the number of values in each categorical feature, but categorical feature 0 has 10765 values. Considering remove this and other categorical features with a large number of values, or add more training examples.
我的代码很简单,col_idx是我生成的列字符串列表,它将传递给stringindexer,col_all是列字符串列表,它将传递给stringindexer和onehotencoder,col_num是数字列名称。
from pyspark.ml.feature import OneHotEncoderEstimator, StringIndexer, VectorAssembler, IndexToString, VectorIndexer
from pyspark.ml import Pipeline
from pyspark.ml.classification import RandomForestClassifier
my_data.cache()
# stringindexers and encoders
stIndexers = [StringIndexer(inputCol = Col, outputCol = Col + 'Index').setHandleInvalid('keep') for Col in col_idx]
encoder = OneHotEncoderEstimator(inputCols = [Col + 'Index' for Col in col_all], outputCols = [Col + 'ClassVec' for Col in col_all]).setHandleInvalid('keep')
# vector assemblor
col_into_assembler = [cols + 'Index' for cols in col_idx] + [cols + 'ClassVec' for cols in col_all] + col_num
assembler = VectorAssembler(inputCols = col_into_assembler, outputCol = "features")
# featureIndexer, labelIndexer, rf classifier and labelConverter
featureIndexer = VectorIndexer(inputCol = "features", outputCol = "indexedFeatures", maxCategories = 30)
# columns smaller than maxCategories => categorical features, columns larger than maxCategories => numerical / continuous features, smaller value => less categorical features, larger value => more categorical features.
labelIndexer = StringIndexer(inputCol = "label", outputCol = "indexedLabel").fit(my_data)
rf = RandomForestClassifier(featuresCol = "indexedFeatures", labelCol = "indexedLabel")
labelConverter = IndexToString(inputCol = "prediction", outputCol = "predictedLabel", labels=labelIndexer.labels)
# chain all the estimators and transformers stages into a Pipeline estimator
rfPipeline = Pipeline(stages = stIndexers + [encoder, assembler, featureIndexer, labelIndexer, rf, labelConverter])
# split data, cache them
training, test = my_data.randomSplit([0.7, 0.3], seed = 100)
training.cache()
test.cache()
# fit the estimator with training dataset to get a compiled pipeline with transformers and fitted models.
ModelRF = rfPipeline.fit(training)
# make predictions
predictions = ModelRF.transform(test)
predictions.printSchema()
predictions.show(5)
所以我的问题是:即使我在 VectorIndexer 中将 maxCategories 设置为 30,为什么我的数据中仍然存在高级别的分类特征。我可以将 rf 分类器中的 maxBins 设置为更高的值,但我只是好奇:为什么 VectorIndexer 没有按预期工作(嗯,正如我预期的那样):将小于 maxCategories 的特征转换为分类特征,将大于特征的特征转换为数字特征。
最佳答案
看起来与文档相反,文档列出了:
Preserve metadata in transform; if a feature's metadata is already present, do not recompute.
在TODO中,元数据已经被保留。
from pyspark.sql.functions import col
from pyspark.ml import Pipeline
from pyspark.ml.feature import *
df = spark.range(10)
stages = [StringIndexer(inputCol="id", outputCol="idx"), VectorAssembler(inputCols=["idx"], outputCol="features"), VectorIndexer(inputCol="features", outputCol="features_indexed", maxCategories=5)]
Pipeline(stages=stages).fit(df).transform(df).schema["features"].metadata
# {'ml_attr': {'attrs': {'nominal': [{'vals': ['8',
# '4',
# '9',
# '5',
# '6',
# '1',
# '0',
# '2',
# '7',
# '3'],
# 'idx': 0,
# 'name': 'idx'}]},
# 'num_attrs': 1}}
Pipeline(stages=stages).fit(df).transform(df).schema["features_indexed"].metadata
# {'ml_attr': {'attrs': {'nominal': [{'ord': False,
# 'vals': ['0.0',
# '1.0',
# '2.0',
# '3.0',
# '4.0',
# '5.0',
# '6.0',
# '7.0',
# '8.0',
# '9.0'],
# 'idx': 0,
# 'name': 'idx'}]},
# 'num_attrs': 1}}
在正常情况下,这是期望的行为。您不应使用索引分类特征作为连续变量
但如果仍然想规避此行为,您必须重置元数据,例如:
pipeline1 = Pipeline(stages=stages[:1])
pipeline2 = Pipeline(stages=stages[1:])
dft1 = pipeline1.fit(df).transform(df).withColumn("idx", col("idx").alias("idx", metadata={}))
dft2 = pipeline2.fit(dft1).transform(dft1)
dft2.schema["features_indexed"].metadata
# {'ml_attr': {'attrs': {'numeric': [{'idx': 0, 'name': 'idx'}]},
# 'num_attrs': 1}}
关于apache-spark - 在 pyspark.ml 中使用 RandomForestClassifier 时,maxCategories 在 VectorIndexer 中无法按预期工作,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50467666/
我需要将文本放在 中在一个 Div 中,在另一个 Div 中,在另一个 Div 中。所以这是它的样子: #document Change PIN
奇怪的事情发生了。 我有一个基本的 html 代码。 html,头部, body 。(因为我收到了一些反对票,这里是完整的代码) 这是我的CSS: html { backgroun
我正在尝试将 Assets 中的一组图像加载到 UICollectionview 中存在的 ImageView 中,但每当我运行应用程序时它都会显示错误。而且也没有显示图像。 我在ViewDidLoa
我需要根据带参数的 perl 脚本的输出更改一些环境变量。在 tcsh 中,我可以使用别名命令来评估 perl 脚本的输出。 tcsh: alias setsdk 'eval `/localhome/
我使用 Windows 身份验证创建了一个新的 Blazor(服务器端)应用程序,并使用 IIS Express 运行它。它将显示一条消息“Hello Domain\User!”来自右上方的以下 Ra
这是我的方法 void login(Event event);我想知道 Kotlin 中应该如何 最佳答案 在 Kotlin 中通配符运算符是 * 。它指示编译器它是未知的,但一旦知道,就不会有其他类
看下面的代码 for story in book if story.title.length < 140 - var story
我正在尝试用 C 语言学习字符串处理。我写了一个程序,它存储了一些音乐轨道,并帮助用户检查他/她想到的歌曲是否存在于存储的轨道中。这是通过要求用户输入一串字符来完成的。然后程序使用 strstr()
我正在学习 sscanf 并遇到如下格式字符串: sscanf("%[^:]:%[^*=]%*[*=]%n",a,b,&c); 我理解 %[^:] 部分意味着扫描直到遇到 ':' 并将其分配给 a。:
def char_check(x,y): if (str(x) in y or x.find(y) > -1) or (str(y) in x or y.find(x) > -1):
我有一种情况,我想将文本文件中的现有行包含到一个新 block 中。 line 1 line 2 line in block line 3 line 4 应该变成 line 1 line 2 line
我有一个新项目,我正在尝试设置 Django 调试工具栏。首先,我尝试了快速设置,它只涉及将 'debug_toolbar' 添加到我的已安装应用程序列表中。有了这个,当我转到我的根 URL 时,调试
在 Matlab 中,如果我有一个函数 f,例如签名是 f(a,b,c),我可以创建一个只有一个变量 b 的函数,它将使用固定的 a=a1 和 c=c1 调用 f: g = @(b) f(a1, b,
我不明白为什么 ForEach 中的元素之间有多余的垂直间距在 VStack 里面在 ScrollView 里面使用 GeometryReader 时渲染自定义水平分隔线。 Scrol
我想知道,是否有关于何时使用 session 和 cookie 的指南或最佳实践? 什么应该和什么不应该存储在其中?谢谢! 最佳答案 这些文档很好地了解了 session cookie 的安全问题以及
我在 scipy/numpy 中有一个 Nx3 矩阵,我想用它制作一个 3 维条形图,其中 X 轴和 Y 轴由矩阵的第一列和第二列的值、高度确定每个条形的 是矩阵中的第三列,条形的数量由 N 确定。
假设我用两种不同的方式初始化信号量 sem_init(&randomsem,0,1) sem_init(&randomsem,0,0) 现在, sem_wait(&randomsem) 在这两种情况下
我怀疑该值如何存储在“WORD”中,因为 PStr 包含实际输出。? 既然Pstr中存储的是小写到大写的字母,那么在printf中如何将其给出为“WORD”。有人可以吗?解释一下? #include
我有一个 3x3 数组: var my_array = [[0,1,2], [3,4,5], [6,7,8]]; 并想获得它的第一个 2
我意识到您可以使用如下方式轻松检查焦点: var hasFocus = true; $(window).blur(function(){ hasFocus = false; }); $(win
我是一名优秀的程序员,十分优秀!