- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 Tensorflow BERT 语言模型解决二元分类问题。这是link到谷歌合作实验室。保存并加载模型并进行训练后,我在进行预测时遇到错误。
保存模型
def serving_input_receiver_fn():
feature_spec = {
"input_ids" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"input_mask" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"segment_ids" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"label_ids" : tf.FixedLenFeature([], tf.int64)
}
serialized_tf_example = tf.placeholder(dtype=tf.string,
shape=[None],
name='input_example_tensor')
print(serialized_tf_example.shape)
receiver_tensors = {'example': serialized_tf_example}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
export_path = '/content/drive/My Drive/binary_class/bert/'
estimator._export_to_tpu = False # this is important
estimator.export_saved_model(export_dir_base=export_path,serving_input_receiver_fn=serving_input_receiver_fn)
预测虚拟文本
pred_sentences = [
"A novel, simple method to get insights from reviews"
]
def getPrediction1(in_sentences):
labels = ["Irrelevant", "Relevant"]
input_examples = [run_classifier.InputExample(guid="", text_a = x, text_b = None, label = 0) for x in in_sentences] # here, "" is just a dummy label
input_features = run_classifier.convert_examples_to_features(input_examples, label_list, MAX_SEQ_LENGTH, tokenizer)
predict_input_fn = run_classifier.input_fn_builder(features=input_features, seq_length=MAX_SEQ_LENGTH, is_training=False, drop_remainder=False)
predictions = est.predict(predict_input_fn)
print(predictions)
return [(sentence, prediction['probabilities'], labels[prediction['labels']]) for sentence, prediction in zip(in_sentences, predictions)]
est = tf.contrib.estimator.SavedModelEstimator(MODEL_FILE_PATH)
predictions = getPrediction1(pred_sentences[0])
predictions
错误
W0702 05:44:17.551325 139812812932992 estimator.py:1811] Using temporary folder as model directory: /tmp/tmpzeiaa6q8
W0702 05:44:17.605536 139812812932992 saved_model_estimator.py:170] train mode not found in SavedModel.
W0702 05:44:17.608479 139812812932992 saved_model_estimator.py:170] eval mode not found in SavedModel.
<generator object Estimator.predict at 0x7f27fa721eb8>
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-28-56ea95428bf4> in <module>()
21 # Relevant "Nanoparticulate drug delivery is a promising drug delivery system to a range of molecules to desired site specific action in the body. In this present work nanoparticles are prepared with positive group of amino group of chitosan with varying concentration based nanoparticles are loaded with anastrazole were prepared by with negative group of sodium tripolyphosphate by ionotropic gelation method. All these formulated nanoparticles are characterized for its particle size ,zeta potential ,drug entrapment efficacy and in-vitro release kinetics .The particle size of all these formulations were found to be 200,365,420,428 And 483.zeta potential of all formulations are-16.3±2.1 ,28.2±4.3,-10.38±3.6,-24.31±3.2 and 21.38±5.2.respectively. FT-IR studies indicated that there was no chemical interaction between drug and polymer and stability of drug. The in-vitro release behaviour from all the drug loaded batches was found to be zero order and provided sustained release over a period of 12 h by diffusion and swelling mechanism and The values of n and r 2 for coated batch was 0.731 and 0.979.Since the values of slope (n) lies in between 0.5 and 1 it was concluded that the mechanism by which drug is being released is a Non-Fickian anomalous solute diffusion mechanism, "
22
---> 23 predictions = getPrediction1(pred_sentences[0:2])
24 predictions
25
5 frames
<ipython-input-28-56ea95428bf4> in getPrediction1(in_sentences)
14 predictions = est.predict(predict_input_fn)
15 print(predictions)
---> 16 return [(sentence, prediction['probabilities'], labels[prediction['labels']]) for sentence, prediction in zip(in_sentences, predictions)]
17
18
<ipython-input-28-56ea95428bf4> in <listcomp>(.0)
14 predictions = est.predict(predict_input_fn)
15 print(predictions)
---> 16 return [(sentence, prediction['probabilities'], labels[prediction['labels']]) for sentence, prediction in zip(in_sentences, predictions)]
17
18
/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in predict(self, input_fn, predict_keys, hooks, checkpoint_path, yield_single_examples)
615 self._create_and_assert_global_step(g)
616 features, input_hooks = self._get_features_from_input_fn(
--> 617 input_fn, ModeKeys.PREDICT)
618 estimator_spec = self._call_model_fn(
619 features, None, ModeKeys.PREDICT, self.config)
/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in _get_features_from_input_fn(self, input_fn, mode)
991 def _get_features_from_input_fn(self, input_fn, mode):
992 """Extracts the `features` from return values of `input_fn`."""
--> 993 result = self._call_input_fn(input_fn, mode)
994 result, _, hooks = estimator_util.parse_input_fn_result(result)
995 self._validate_features_in_predict_input(result)
/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in _call_input_fn(self, input_fn, mode, input_context)
1111 kwargs['input_context'] = input_context
1112 with ops.device('/cpu:0'):
-> 1113 return input_fn(**kwargs)
1114
1115 def _call_model_fn(self, features, labels, mode, config):
/usr/local/lib/python3.6/dist-packages/bert/run_classifier.py in input_fn(params)
727 def input_fn(params):
728 """The actual input function."""
--> 729 batch_size = params["batch_size"]
730
731 num_examples = len(features)
KeyError: 'batch_size'
batch_size 参数存在于估计器中,但不存在于加载的模型参数中。
estimator.params['batch_size'] # 32
est.params['batch_size'] # KeyError: 'batch_size'
最佳答案
您正在使用SavedModelEstimator
,它不提供传入 RunConfig
或 params
参数的选项,
because the model function graph is defined statically in the SavedModel.
由于 SavedModelEstimator
是 Estimator
的子类,因此 params 只是存储超参数的字典。我想你可以修改params
在调用 getPrediction1 之前将所需的(键,值)对传递给它。例如:
est = tf.contrib.estimator.SavedModelEstimator(MODEL_FILE_PATH)
est.params['batch_size'] = 1
predictions = getPrediction1(pred_sentences)
关于python - 使用 BERT 模型进行推理时没有batch_size,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56846266/
我喜欢 smartcase,也喜欢 * 和 # 搜索命令。但我更希望 * 和 # 搜索命令区分大小写,而/和 ?搜索命令遵循 smartcase 启发式。 是否有隐藏在某个地方我还没有找到的设置?我宁
关闭。这个问题是off-topic .它目前不接受答案。 想改进这个问题? Update the question所以它是on-topic对于堆栈溢出。 10年前关闭。 Improve this qu
从以下网站,我找到了执行java AD身份验证的代码。 http://java2db.com/jndi-ldap-programming/solution-to-sslhandshakeexcepti
似乎 melt 会使用 id 列和堆叠的测量变量 reshape 您的数据框,然后通过转换让您执行聚合。 ddply,从 plyr 包看起来非常相似..你给它一个数据框,几个用于分组的列变量和一个聚合
我的问题是关于 memcached。 Facebook 使用 memcached 作为其结构化数据的缓存,以减少用户的延迟。他们在 Linux 上使用 UDP 优化了 memcached 的性能。 h
在 Camel route ,我正在使用 exec 组件通过 grep 进行 curl ,但使用 ${HOSTNAME} 的 grep 无法正常工作,下面是我的 Camel 路线。请在这方面寻求帮助。
我正在尝试执行相当复杂的查询,在其中我可以排除与特定条件集匹配的项目。这是一个 super 简化的模型来解释我的困境: class Thing(models.Model) user = mod
我正在尝试执行相当复杂的查询,我可以在其中排除符合特定条件集的项目。这里有一个 super 简化的模型来解释我的困境: class Thing(models.Model) user = mod
我发现了很多嵌入/内容项目的旧方法,并且我遵循了在这里找到的最新方法(我假设):https://blog.angular-university.io/angular-ng-content/ 我正在尝试
我正在寻找如何使用 fastify-nextjs 启动 fastify-cli 的建议 我曾尝试将代码简单地添加到建议的位置,但它不起作用。 'use strict' const path = req
我正在尝试将振幅 js 与 React 和 Gatsby 集成。做 gatsby developer 时一切看起来都不错,因为它发生在浏览器中,但是当我尝试 gatsby build 时,我收到以下错
我试图避免过度执行空值检查,但同时我想在需要使代码健壮的时候进行空值检查。但有时我觉得它开始变得如此防御,因为我没有实现 API。然后我避免了一些空检查,但是当我开始单元测试时,它开始总是等待运行时异
尝试进行包含一些 NOT 的 Kibana 搜索,但获得包含 NOT 的结果,因此猜测我的语法不正确: "chocolate" AND "milk" AND NOT "cow" AND NOT "tr
我正在使用开源代码共享包在 iOS 中进行 facebook 集成,但收到错误“FT_Load_Glyph failed: glyph 65535: error 6”。我在另一台 mac 机器上尝试了
我正在尝试估计一个标准的 tobit 模型,该模型被审查为零。 变量是 因变量 : 幸福 自变量 : 城市(芝加哥,纽约), 性别(男,女), 就业(0=失业,1=就业), 工作类型(失业,蓝色,白色
我有一个像这样的项目布局 样本/ 一种/ 源/ 主要的/ java / java 资源/ .jpg 乙/ 源/ 主要的/ java / B.java 资源/ B.jpg 构建.gradle 设置.gr
如何循环遍历数组中的多个属性以及如何使用map函数将数组中的多个属性显示到网页 import React, { Component } from 'react'; import './App.css'
我有一个 JavaScript 函数,它进行 AJAX 调用以返回一些数据,该调用是在选择列表更改事件上触发的。 我尝试了多种方法来在等待时显示加载程序,因为它当前暂停了选择列表,从客户的 Angul
可能以前问过,但找不到。 我正在用以下形式写很多语句: if (bar.getFoo() != null) { this.foo = bar.getFoo(); } 我想到了三元运算符,但我认
我有一个表单,在将其发送到 PHP 之前我正在执行一些验证 JavaScript,验证后的 JavaScript 函数会发布用户在 中输入的文本。页面底部的标签;然而,此消息显示短暂,然后消失...
我是一名优秀的程序员,十分优秀!