gpt4 book ai didi

python - 使用 BERT 模型进行推理时没有batch_size

转载 作者:行者123 更新时间:2023-11-30 08:28:30 28 4
gpt4 key购买 nike

我正在使用 Tensorflow BERT 语言模型解决二元分类问题。这是link到谷歌合作实验室。保存并加载模型并进行训练后,我在进行预测时遇到错误。

保存模型

def serving_input_receiver_fn():
feature_spec = {
"input_ids" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"input_mask" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"segment_ids" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"label_ids" : tf.FixedLenFeature([], tf.int64)
}
serialized_tf_example = tf.placeholder(dtype=tf.string,
shape=[None],
name='input_example_tensor')
print(serialized_tf_example.shape)
receiver_tensors = {'example': serialized_tf_example}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)

export_path = '/content/drive/My Drive/binary_class/bert/'
estimator._export_to_tpu = False # this is important
estimator.export_saved_model(export_dir_base=export_path,serving_input_receiver_fn=serving_input_receiver_fn)

预测虚拟文本

pred_sentences = [
"A novel, simple method to get insights from reviews"
]

def getPrediction1(in_sentences):
labels = ["Irrelevant", "Relevant"]
input_examples = [run_classifier.InputExample(guid="", text_a = x, text_b = None, label = 0) for x in in_sentences] # here, "" is just a dummy label
input_features = run_classifier.convert_examples_to_features(input_examples, label_list, MAX_SEQ_LENGTH, tokenizer)
predict_input_fn = run_classifier.input_fn_builder(features=input_features, seq_length=MAX_SEQ_LENGTH, is_training=False, drop_remainder=False)
predictions = est.predict(predict_input_fn)
print(predictions)
return [(sentence, prediction['probabilities'], labels[prediction['labels']]) for sentence, prediction in zip(in_sentences, predictions)]

est = tf.contrib.estimator.SavedModelEstimator(MODEL_FILE_PATH)
predictions = getPrediction1(pred_sentences[0])
predictions

错误

W0702 05:44:17.551325 139812812932992 estimator.py:1811] Using temporary folder as model directory: /tmp/tmpzeiaa6q8
W0702 05:44:17.605536 139812812932992 saved_model_estimator.py:170] train mode not found in SavedModel.
W0702 05:44:17.608479 139812812932992 saved_model_estimator.py:170] eval mode not found in SavedModel.
<generator object Estimator.predict at 0x7f27fa721eb8>
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-28-56ea95428bf4> in <module>()
21 # Relevant "Nanoparticulate drug delivery is a promising drug delivery system to a range of molecules to desired site specific action in the body. In this present work nanoparticles are prepared with positive group of amino group of chitosan with varying concentration based nanoparticles are loaded with anastrazole were prepared by with negative group of sodium tripolyphosphate by ionotropic gelation method. All these formulated nanoparticles are characterized for its particle size ,zeta potential ,drug entrapment efficacy and in-vitro release kinetics .The particle size of all these formulations were found to be 200,365,420,428 And 483.zeta potential of all formulations are-16.3±2.1 ,28.2±4.3,-10.38±3.6,-24.31±3.2 and 21.38±5.2.respectively. FT-IR studies indicated that there was no chemical interaction between drug and polymer and stability of drug. The in-vitro release behaviour from all the drug loaded batches was found to be zero order and provided sustained release over a period of 12 h by diffusion and swelling mechanism and The values of n and r 2 for coated batch was 0.731 and 0.979.Since the values of slope (n) lies in between 0.5 and 1 it was concluded that the mechanism by which drug is being released is a Non-Fickian anomalous solute diffusion mechanism, "
22
---> 23 predictions = getPrediction1(pred_sentences[0:2])
24 predictions
25

5 frames
<ipython-input-28-56ea95428bf4> in getPrediction1(in_sentences)
14 predictions = est.predict(predict_input_fn)
15 print(predictions)
---> 16 return [(sentence, prediction['probabilities'], labels[prediction['labels']]) for sentence, prediction in zip(in_sentences, predictions)]
17
18

<ipython-input-28-56ea95428bf4> in <listcomp>(.0)
14 predictions = est.predict(predict_input_fn)
15 print(predictions)
---> 16 return [(sentence, prediction['probabilities'], labels[prediction['labels']]) for sentence, prediction in zip(in_sentences, predictions)]
17
18

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in predict(self, input_fn, predict_keys, hooks, checkpoint_path, yield_single_examples)
615 self._create_and_assert_global_step(g)
616 features, input_hooks = self._get_features_from_input_fn(
--> 617 input_fn, ModeKeys.PREDICT)
618 estimator_spec = self._call_model_fn(
619 features, None, ModeKeys.PREDICT, self.config)

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in _get_features_from_input_fn(self, input_fn, mode)
991 def _get_features_from_input_fn(self, input_fn, mode):
992 """Extracts the `features` from return values of `input_fn`."""
--> 993 result = self._call_input_fn(input_fn, mode)
994 result, _, hooks = estimator_util.parse_input_fn_result(result)
995 self._validate_features_in_predict_input(result)

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in _call_input_fn(self, input_fn, mode, input_context)
1111 kwargs['input_context'] = input_context
1112 with ops.device('/cpu:0'):
-> 1113 return input_fn(**kwargs)
1114
1115 def _call_model_fn(self, features, labels, mode, config):

/usr/local/lib/python3.6/dist-packages/bert/run_classifier.py in input_fn(params)
727 def input_fn(params):
728 """The actual input function."""
--> 729 batch_size = params["batch_size"]
730
731 num_examples = len(features)

KeyError: 'batch_size'

batch_size 参数存在于估计器中,但不存在于加载的模型参数中。

estimator.params['batch_size'] # 32

est.params['batch_size'] # KeyError: 'batch_size'

最佳答案

您正在使用SavedModelEstimator ,它不提供传入 RunConfigparams 参数的选项,

because the model function graph is defined statically in the SavedModel.

由于 SavedModelEstimatorEstimator 的子类,因此 params 只是存储超参数的字典。我想你可以修改params在调用 getPrediction1 之前将所需的(键,值)对传递给它。例如:

est = tf.contrib.estimator.SavedModelEstimator(MODEL_FILE_PATH)
est.params['batch_size'] = 1
predictions = getPrediction1(pred_sentences)

关于python - 使用 BERT 模型进行推理时没有batch_size,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56846266/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com