- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我查过各种svm分类工具,主要是svmlight、pysvmlight、libsvm、scikit learn svm classifier。
每个输入测试文件都采用不同的格式,例如
pysvmlight:
[(0, [(13.0, 1.0), (14.0, 1.0), (173.0, 1.0), (174.0, 1.0)]),
(0,
[(9.0, 1.0),
(10.0, 1.0),
(11.0, 1.0),
(12.0, 1.0),
(16.0, 1.0),
(19.0, 1.0),
(20.0, 1.0),
(21.0, 1.0),
(22.0, 1.0),
(56.0, 1.0)]
svmlight
+1 6:0.0342598670723747 26:0.148286149621374 27:0.0570037235976456 31:0.0373086482671729 33:0.0270832794680822 63:0.0317368459004657 67:0.138424991237843 75:0.0297571881179897 96:0.0303237495966756 142:0.0241139382095992 144:0.0581948804675796 185:0.0285004985793364 199:0.0228776475252599 208:0.0366675566391316 274:0.0528930062061687 308:0.0361623318128513 337:0.0374174808347037 351:0.0347329937800643 387:0.0690970538458777 408:0.0288195477724883 423:0.0741629177979597 480:0.0719961218888683 565:0.0520577748209694 580:0.0442849093862884 593:0.329982711875242 598:0.0517245325094578 613:0.0452655621746453 641:0.0387269206869957 643:0.0398205809532254 644:0.0466353065571088 657:0.0508331832990127 717:0.0495981406619795 727:0.104798994968809 764:0.0452655621746453 827:0.0418050310923008 1027:0.05114477444793 1281:0.0633241153685135 1340:0.0657101916402099 1395:0.0522617631894159 1433:0.0471872599750513 1502:0.840963375098259 1506:0.0686138465829187 1558:0.0589627036028818 1598:0.0512079697459134 1726:0.0660884976719923 1836:0.0521934221969394 1943:0.0587388821544177 2433:0.0666767220421155 2646:0.0729483627336339 2731:0.071437898589286 2771:0.0706069752753547 3553:0.0783933439550538 3589:0.0774668403369963
http://svm.chibi.ubc.ca//sample.test.matrix.txt
corner feature_1 feature_2 feature_3 feature_4
example_11 -0.18 0.14 -0.06 0.54
example_12 0.16 -0.25 0.26 0.33
example_13 0.06 0.0 -0.2 -0.22
example_14 -0.12 -0.22 0.29 -0.01
example_15 -0.20 -0.23 -0.1 -0.71
是否有任何 svm 分类器可以接受纯输入文本并给出分类结果?
最佳答案
我的答案有两个
有些 SVM 实现可以直接处理文本数据,例如 https://github.com/timshenkao/StringKernelSVM 。 LIBSVM 还能够http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#libsvm_for_string_data 。在文本数据上直接使用 SVM 的关键是所谓的字符串内核。 SVM 中使用内核来测量不同数据点(即文本文档)之间的距离。字符串内核的一个示例是不同文本文档之间的编辑距离,参见 http://www.jmlr.org/papers/volume2/lodhi02a/lodhi02a.pdf
问题是这对于使用文本内核进行文本分类是否是一个好主意。
简化支持向量机是一个函数
f(x) = sgn( <w,phi(x)> +b)
通常发生的情况是,您获取输入文档,计算这些词的词袋表示,然后采用像线性这样的标准内核。所以类似:
f(x) = sgn( <w,phi(bag-of-words(x))> +b)
您最可能想要的是带有内核的 SVM,该内核将词袋与线性内核相结合。这在实现方面很容易,但也有缺点
这两部分的底线:它与 SVM 无关,而是与内核有关。
关于machine-learning - 哪个是对纯输入文本进行分类的最佳 svm 示例?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26278666/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!