gpt4 book ai didi

python - 使用Python训练后,神经网络未提供预期的输出

转载 作者:行者123 更新时间:2023-11-30 08:27:54 25 4
gpt4 key购买 nike

我的神经网络在用Python训练后没有给出预期的输出。代码中是否有错误?有什么方法可以减少均方误差(MSE)?

我试图反复训练(运行程序)网络,但它不是在学习,而是给出相同的MSE和输出。

这是我使用的数据:

https://drive.google.com/open?id=1GLm87-5E_6YhUIPZ_CtQLV9F9wcGaTj2

这是我的代码:

#load and evaluate a saved model
from numpy import loadtxt
from tensorflow.keras.models import load_model

# load model
model = load_model('ANNnew.h5')
# summarize model.
model.summary()
#Model starts
import numpy as np
import pandas as pd
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.models import Sequential
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# Importing the dataset
X = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet1").values
y = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet2").values

# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.08, random_state = 0)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# Initialising the ANN
model = Sequential()

# Adding the input layer and the first hidden layer
model.add(Dense(32, activation = 'tanh', input_dim = 4))

# Adding the second hidden layer
model.add(Dense(units = 18, activation = 'tanh'))

# Adding the third hidden layer
model.add(Dense(units = 32, activation = 'tanh'))

#model.add(Dense(1))
model.add(Dense(units = 1))

# Compiling the ANN
model.compile(optimizer = 'adam', loss = 'mean_squared_error')

# Fitting the ANN to the Training set
model.fit(X_train, y_train, batch_size = 100, epochs = 1000)

y_pred = model.predict(X_test)
for i in range(5):
print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y[i].tolist()))


plt.plot(y_test, color = 'red', label = 'Test data')
plt.plot(y_pred, color = 'blue', label = 'Predicted data')
plt.title('Prediction')
plt.legend()
plt.show()

# save model and architecture to single file
model.save("ANNnew.h5")
print("Saved model to disk")

最佳答案

我注意到您的印刷报告存在一个小错误-而不是:

for i in range(5):
print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y[i].tolist()))


你应该有:

for i in range(len(y_test)):
print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y_test[i].tolist()))


在此打印文件中,您最终将比较测试预测和测试的正确(以前您将数组y中前5个观测值的测试预测和真实值进行比较),以及测试中的所有6个观测值,而不仅仅是5 :-)

您还应该监视的是火车数据的模型质量。为了使这种情况清楚起见,请极其简化:


您应该尝试使用神经网络(NN)过度拟合火车数据;如果您甚至无法使用NN过度拟合训练数据,则可能是因为NN在当前状态下使您的问题的解决方案令人失望;在这种情况下,您将需要寻找其他功能(也将在下文中提及),更改模型质量指标或仅接受归因于正在准备的解决方案的预测质量的限制;
确保有可能过度拟合火车数据或接受预测质量的限制,您的目标是找到可以推广的最佳模型;监视模型的训练和测试质量至关重要;泛化模型是对火车数据和有效数据执行类似操作的模型;为了找到最佳的通用模型,您可以:


寻找有价值的功能(您拥有的数据或其他数据源的转换)
玩NN架构
参与神经网络估计过程



通常,为了实现找到可以推广的最佳NN的最终目标,优良作法是在model.fit调用中使用validation_split或validation_data。

进口货

# imports
import numpy as np
import pandas as pd
import os
import tensorflow as tf
import matplotlib.pyplot as plt
import random
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.models import Sequential
from tensorflow import set_random_seed
from tensorflow.keras.initializers import glorot_uniform
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from importlib import reload


有用的功能

# useful pandas display settings
pd.options.display.float_format = '{:.3f}'.format

# useful functions
def plot_history(history, metrics_to_plot):
"""
Function plots history of selected metrics for fitted neural net.

"""

# plot
for metric in metrics_to_plot:
plt.plot(history.history[metric])

# name X axis informatively
plt.xlabel('epoch')

# name Y axis informatively
plt.ylabel('metric')

# add informative legend
plt.legend(metrics_to_plot)

# plot
plt.show()

def plot_fit(y_true, y_pred, title='title'):
"""
Function plots true values and predicted values, sorted in increase order by true values.

"""

# create one dataframe with true values and predicted values
results = y_true.reset_index(drop=True).merge(pd.DataFrame(y_pred), left_index=True, right_index=True)

# rename columns informartively
results.columns = ['true', 'prediction']

# sort for clarity of visualization
results = results.sort_values(by=['true']).reset_index(drop=True)

# plot true values vs predicted values
results.plot()

# adding scatter on line plots
plt.scatter(results.index, results.true, s=5)
plt.scatter(results.index, results.prediction, s=5)

# name X axis informatively
plt.xlabel('obs sorted in ascending order with respect to true values')

# add customizable title
plt.title(title)

# plot
plt.show();

def reset_all_randomness():
"""
Function assures reproducibility of NN estimation results.

"""

# reloads
reload(tf)
reload(np)
reload(random)

# seeds - for reproducibility
os.environ['PYTHONHASHSEED']=str(984797)
random.seed(984797)
set_random_seed(984797)
np.random.seed(984797)
my_init = glorot_uniform(seed=984797)

return my_init


从文件加载X和y

X = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet1").values
y = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet2").values


将X和y分为训练集和测试集

# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()

# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.08, random_state = 0)


功能缩放

# Feature Scaling
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)


Model0-尝试对火车数据进行过度拟合并验证过度拟合

# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()

# model0

# Initialising the ANN
model0 = Sequential()

# Adding 1 hidden layer: the input layer and the first hidden layer
model0.add(Dense(units = 128, activation = 'tanh', input_dim = 4, kernel_initializer=my_init))

# Adding 2 hidden layer
model0.add(Dense(units = 64, activation = 'tanh', kernel_initializer=my_init))

# Adding 3 hidden layer
model0.add(Dense(units = 32, activation = 'tanh', kernel_initializer=my_init))

# Adding 4 hidden layer
model0.add(Dense(units = 16, activation = 'tanh', kernel_initializer=my_init))

# Adding output layer
model0.add(Dense(units = 1, kernel_initializer=my_init))

# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.99)

# Compiling the ANN
model0.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])

# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model0.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000)

# Generate prediction for both Train and Valid set
y_train_pred_model0 = model0.predict(X_train)
y_test_pred_model0 = model0.predict(X_test)

# check what metrics are in fact available in history
history.history.keys()

dict_keys(['val_loss', 'val_mean_squared_error', 'val_mean_absolute_error', 'loss', 'mean_squared_error', 'mean_absolute_error'])

# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['mean_absolute_error', 'val_mean_absolute_error'])

# look at model fit quality
for i in range(len(y_test)):
print('%s => %s (expected %s)' % (X[i].tolist(), y_test_pred_model0[i], y_test[i]))
plot_fit(pd.DataFrame(y_train), y_train_pred_model0, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model0, 'Fit on test data')

print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))


enter image description here
enter image description here

[1000.0, 25.0, 2235.3, 1.0] => [2.2463024] (expected [3])
[1000.0, 30.0, 2190.1, 1.0] => [5.6396966] (expected [3])
[1000.0, 35.0, 2144.7, 1.0] => [5.6486473] (expected [5])
[1000.0, 40.0, 2098.9, 1.0] => [4.852657] (expected [3])
[1000.0, 45.0, 2052.9, 1.0] => [3.9801836] (expected [4])
[1000.0, 25.0, 2235.3, 1.0] => [5.761505] (expected [6])


enter image description here
enter image description here

MSE on train data is: 0.1629941761493683
MSE on test data is: 1.9077353477478027


有了这个结果,让我们假设过度拟合成功了。

寻找有价值的功能(您拥有的数据的转换)

# augment features by calculating absolute values and squares of original features
X_train = np.array([list(x) + list(np.abs(x)) + list(x**2) for x in X_train])
X_test = np.array([list(x) + list(np.abs(x)) + list(x**2) for x in X_test])


Model1-具有8个附加功能,总共12个输入(而不是4个)

# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()

# model1

# Initialising the ANN
model1 = Sequential()

# Adding 1 hidden layer: the input layer and the first hidden layer
model1.add(Dense(units = 128, activation = 'tanh', input_dim = 12, kernel_initializer=my_init))

# Adding 2 hidden layer
model1.add(Dense(units = 64, activation = 'tanh', kernel_initializer=my_init))

# Adding 3 hidden layer
model1.add(Dense(units = 32, activation = 'tanh', kernel_initializer=my_init))

# Adding 4 hidden layer
model1.add(Dense(units = 16, activation = 'tanh', kernel_initializer=my_init))

# Adding output layer
model1.add(Dense(units = 1, kernel_initializer=my_init))

# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.99)

# Compiling the ANN
model1.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])

# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model1.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000)

# Generate prediction for both Train and Valid set
y_train_pred_model1 = model1.predict(X_train)
y_test_pred_model1 = model1.predict(X_test)

# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['mean_absolute_error', 'val_mean_absolute_error'])

# look at model fit quality
for i in range(len(y_test)):
print('%s => %s (expected %s)' % (X[i].tolist(), y_test_pred_model1[i], y_test[i]))
plot_fit(pd.DataFrame(y_train), y_train_pred_model1, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model1, 'Fit on test data')

print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))


enter image description here
enter image description here

[1000.0, 25.0, 2235.3, 1.0] => [2.5696845] (expected [3])
[1000.0, 30.0, 2190.1, 1.0] => [5.0152197] (expected [3])
[1000.0, 35.0, 2144.7, 1.0] => [4.4963903] (expected [5])
[1000.0, 40.0, 2098.9, 1.0] => [5.004753] (expected [3])
[1000.0, 45.0, 2052.9, 1.0] => [3.982211] (expected [4])
[1000.0, 25.0, 2235.3, 1.0] => [6.158882] (expected [6])


enter image description here
enter image description here

MSE on train data is: 0.17548464238643646
MSE on test data is: 1.4240833520889282


Model2-具有2个隐藏层的NN的网格搜索实验
地址:

使用NN架构(layer1_neurons,layer2_neurons,activation_function)

参与NN估算过程(learning_rate,beta1,beta2)

# init experiment_results
experiment_results = []

# the experiment
for layer1_neurons in [4, 8, 16,32 ]:
for layer2_neurons in [4, 8, 16, 32]:
for activation_function in ['tanh', 'relu']:
for learning_rate in [0.01, 0.001]:
for beta1 in [0.9]:
for beta2 in [0.99]:

# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()

# model2
# Initialising the ANN
model2 = Sequential()

# Adding 1 hidden layer: the input layer and the first hidden layer
model2.add(Dense(units = layer1_neurons, activation = activation_function, input_dim = 12, kernel_initializer=my_init))

# Adding 2 hidden layer
model2.add(Dense(units = layer2_neurons, activation = activation_function, kernel_initializer=my_init))

# Adding output layer
model2.add(Dense(units = 1, kernel_initializer=my_init))

# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1, beta2=beta2)

# Compiling the ANN
model2.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])

# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model2.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000, verbose=0)

# Generate prediction for both Train and Valid set
y_train_pred_model2 = model2.predict(X_train)
y_test_pred_model2 = model2.predict(X_test)

print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))

# create data you want to save for each processed NN
partial_results = \
{
'layer1_neurons': layer1_neurons,
'layer2_neurons': layer2_neurons,
'activation_function': activation_function,

'learning_rate': learning_rate,
'beta1': beta1,
'beta2': beta2,

'final_train_mean_squared_error': history.history['mean_squared_error'][-1],
'final_val_mean_squared_error': history.history['val_mean_squared_error'][-1],

'best_train_epoch': history.history['mean_squared_error'].index(min(history.history['mean_squared_error'])),
'best_train_mean_squared_error': np.min(history.history['mean_squared_error']),

'best_val_epoch': history.history['val_mean_squared_error'].index(min(history.history['val_mean_squared_error'])),
'best_val_mean_squared_error': np.min(history.history['val_mean_squared_error']),

}

experiment_results.append(
partial_results
)


探索实验结果:

# put experiment_results into DataFrame
experiment_results_df = pd.DataFrame(experiment_results)

# identifying models hopefully not too much overfitted to valid data at the end of estimation (after 1000 epochs) :
experiment_results_df['valid'] = experiment_results_df['final_val_mean_squared_error'] > experiment_results_df['final_train_mean_squared_error']

# display the best combinations of parameters for valid data, which seems not overfitted
experiment_results_df[experiment_results_df['valid']].sort_values(by=['final_val_mean_squared_error']).head()

layer1_neurons layer2_neurons activation_function learning_rate beta1 beta2 final_train_mean_squared_error final_val_mean_squared_error best_train_epoch best_train_mean_squared_error best_val_epoch best_val_mean_squared_error valid
26 8 16 relu 0.010 0.900 0.990 0.992 1.232 998 0.992 883 1.117 True
36 16 8 tanh 0.010 0.900 0.990 0.178 1.345 998 0.176 40 1.245 True
14 4 32 relu 0.010 0.900 0.990 1.320 1.378 980 1.300 98 0.937 True
2 4 4 relu 0.010 0.900 0.990 1.132 1.419 996 1.131 695 1.002 True
57 32 16 tanh 0.001 0.900 0.990 1.282 1.432 999 1.282 999 1.432 True


如果考虑到整个培训历史,则可以做得更好:

# for each NN estimation identify dictionary of epochs for which NN was not overfitted towards valid data 
# for each such epoch I store its number and corresponding mean_squared_error on valid data
experiment_results_df['not_overfitted_epochs_on_valid'] = \
experiment_results_df.apply(
lambda row:
{
i: row['val_mean_squared_error_history'][i]
for i in range(len(row['train_mean_squared_error_history']))
if row['val_mean_squared_error_history'][i] > row['train_mean_squared_error_history'][i]
},
axis=1
)

# basing on previosuly prepared dict, for each NN estimation I can identify:
# best not overfitted mse value on valid data and corresponding best not overfitted epoch on valid data
experiment_results_df['best_not_overfitted_mse_on_valid'] = \
experiment_results_df['not_overfitted_epochs_on_valid'].apply(
lambda x: np.min(list(x.values())) if len(list(x.values()))>0 else np.NaN
)

experiment_results_df['best_not_overfitted_epoch_on_valid'] = \
experiment_results_df['not_overfitted_epochs_on_valid'].apply(
lambda x: list(x.keys())[list(x.values()).index(np.min(list(x.values())))] if len(list(x.values()))>0 else np.NaN
)

# now I can sort all estimations according to best not overfitted mse on valid data overall, not only at the end of estimation
experiment_results_df.sort_values(by=['best_not_overfitted_mse_on_valid'])[[
'layer1_neurons','layer2_neurons','activation_function','learning_rate','beta1','beta2',
'best_not_overfitted_mse_on_valid','best_not_overfitted_epoch_on_valid'
]].head()

layer1_neurons layer2_neurons activation_function learning_rate beta1 beta2 best_not_overfitted_mse_on_valid best_not_overfitted_epoch_on_valid
26 8 16 relu 0.010 0.900 0.990 1.117 883.000
54 32 8 relu 0.010 0.900 0.990 1.141 717.000
50 32 4 relu 0.010 0.900 0.990 1.210 411.000
36 16 8 tanh 0.010 0.900 0.990 1.246 821.000
56 32 16 tanh 0.010 0.900 0.990 1.264 693.000


现在,我记录用于最终模型估计的最佳估计组合:


layer1_neurons = 8
layer2_neurons = 16
activation_function ='relu'
learning_rate = 0.010
beta1 = 0.900
beta2 = 0.990
停止训练的纪元= 883


Model3-最终模型

# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()

# model3

# Initialising the ANN
model3 = Sequential()

# Adding 1 hidden layer: the input layer and the first hidden layer
model3.add(Dense(units = 8, activation = 'relu', input_dim = 12, kernel_initializer=my_init))

# Adding 2 hidden layer
model3.add(Dense(units = 16, activation = 'relu', kernel_initializer=my_init))

# Adding output layer
model3.add(Dense(units = 1, kernel_initializer=my_init))

# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.010, beta1=0.900, beta2=0.990)

# Compiling the ANN
model3.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])

# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model3.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 884)

# Generate prediction for both Train and Valid set
y_train_pred_model3 = model3.predict(X_train)
y_test_pred_model3 = model3.predict(X_test)

# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['mean_absolute_error', 'val_mean_absolute_error'])

# look at model fit quality
for i in range(len(y_test)):
print('%s => %s (expected %s)' % (X[i].tolist(), y_test_pred_model3[i], y_test[i]))
plot_fit(pd.DataFrame(y_train), y_train_pred_model3, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model3, 'Fit on test data')

print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))


enter image description here
enter image description here

[1000.0, 25.0, 2235.3, 1.0] => [1.8813248] (expected [3])
[1000.0, 30.0, 2190.1, 1.0] => [4.3430963] (expected [3])
[1000.0, 35.0, 2144.7, 1.0] => [4.827326] (expected [5])
[1000.0, 40.0, 2098.9, 1.0] => [4.6029215] (expected [3])
[1000.0, 45.0, 2052.9, 1.0] => [3.8530324] (expected [4])
[1000.0, 25.0, 2235.3, 1.0] => [4.9882255] (expected [6])


enter image description here
enter image description here

MSE on train data is: 1.088669776916504
MSE on test data is: 1.1166337728500366


无论如何,我都不认为Model3最适合您的数据。我只是想向您介绍使用NN的方法。您可能还对进一步探讨主题感兴趣:


探索性分析(寻找功能的想法),
特征提取(计算特征),
交叉验证(与确保模型泛化有关的方法-尤其是因为您的数据很小),
神经网络的超参数及其估计过程(需要调整的内容),
超参数优化(方法如网格搜索,随机搜索,贝叶斯搜索,支持调整参数的遗传算法=查找最佳模型),
尽早停止神经网络估计(估计规则可以节省一些估计时间)。


希望您会发现它对进一步的研究有所启发:-)


编辑:

我与Model0一样,分享了从近似到分类重新定义此问题所需的示例性步骤。我也想分享一些有价值的参考文献,以防您想更熟悉Python中的NN:

[2018 Chollet]使用Python进行深度学习

附加的有用功能

def give_me_mse(true, prediction):
"""
This function returns mse for 2 vectors: true and predicted values.

"""

return np.mean((true-prediction)**2)


从文件加载X和y

# as previosly


编码目标-从现在开始,您需要7个向量来反映目标值(由于您的目标有7个等级)

from sklearn.preprocessing import LabelEncoder
from keras.utils import np_utils

# encode class values as integers
encoder = LabelEncoder()
encoder.fit(np.ravel(y))
y_encoded = encoder.transform(np.ravel(y))
# convert integers to dummy variables (i.e. one hot encoded)
y_dummy = np_utils.to_categorical(y_encoded)


将X和y分为训练集和测试集

# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()

# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test, y_train_dummy, y_test_dummy = train_test_split(X, y, y_dummy, test_size = 0.08, random_state = 0)


功能缩放

# as previosly


Model0-为分类问题重新安排

现在,NN为单个输入数据输入生成7元素输出

输出构成7个概率,属于相应目标水平的概率

# model0

# Initialising the ANN
model0 = Sequential()

# Adding 1 hidden layer: the input layer and the first hidden layer
model0.add(Dense(units = 128, activation = 'tanh', input_dim = 4, kernel_initializer=my_init))

# Adding 2 hidden layer
model0.add(Dense(units = 64, activation = 'tanh', kernel_initializer=my_init))

# Adding 3 hidden layer
model0.add(Dense(units = 32, activation = 'tanh', kernel_initializer=my_init))

# Adding 4 hidden layer
model0.add(Dense(units = 16, activation = 'tanh', kernel_initializer=my_init))

# Adding output layer
model0.add(Dense(units = 7, activation = 'softmax', kernel_initializer=my_init))

# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.99)

# Compiling the ANN
model0.compile(optimizer = Optimizer, loss = 'categorical_crossentropy', metrics=['accuracy','categorical_crossentropy','mse'])

# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model0.fit(X_train, y_train_dummy, validation_data=(X_test, y_test_dummy), batch_size = 100, epochs = 1000)

# Generate prediction for both Train and Valid set
y_train_pred_model0 = model0.predict(X_train)
y_test_pred_model0 = model0.predict(X_test)

# find final prediction by taking class with highest probability
y_train_pred_model0 = np.array([[list(x).index(max(list(x))) + 1] for x in y_train_pred_model0])
y_test_pred_model0 = np.array([[list(x).index(max(list(x))) + 1] for x in y_test_pred_model0])

# check what metrics are in fact available in history
history.history.keys()

dict_keys(['val_loss', 'val_acc', 'val_categorical_crossentropy', 'val_mean_squared_error', 'loss', 'acc', 'categorical_crossentropy', 'mean_squared_error'])

# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['categorical_crossentropy', 'val_categorical_crossentropy'])
plot_history(history, ['acc', 'val_acc'])

# look at model fit quality
plot_fit(pd.DataFrame(y_train), y_train_pred_model0, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model0, 'Fit on test data')

print('MSE on train data is: {}'.format(give_me_mse(y_train, y_train_pred_model0)))
print('MSE on test data is: {}'.format(give_me_mse(y_test, y_test_pred_model0)))


enter image description here
enter image description here
enter image description here
enter image description here
enter image description here

MSE on train data is: 0.0
MSE on test data is: 1.3333333333333333

关于python - 使用Python训练后,神经网络未提供预期的输出,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58918390/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com