- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试运行弹性网。从 LASSO 开始,然后从那里开始。我可以让它直接运行,但当我尝试使用 caret
包中的 train
运行相同的参数时,它会失败。我想让 train
正常工作,以便我可以用它来评估模型参数。
# Works
test <- enet( x=x, y=y, lambda=0, trace=TRUE, normalize=FALSE, intercept=FALSE )
# Doesn't
enetGrid <- data.frame(.lambda=0,.fraction=c(.01,.001,.0005,.0001))
ctrl <- trainControl( method="repeatedcv", repeats=5 )
> test2 <- train( x, y, method="enet", tuneGrid=enetGrid, trControl=ctrl, preProc=NULL )
fraction lambda RMSE Rsquared RMSESD RsquaredSD
1 1e-04 0 NaN NaN NA NA
2 5e-04 0 NaN NaN NA NA
3 1e-03 0 NaN NaN NA NA
4 1e-02 0 NaN NaN NA NA
Error in train.default(x, y, method = "enet", tuneGrid = enetGrid, trControl = ctrl, :
final tuning parameters could not be determined
In addition: There were 50 or more warnings (use warnings() to see the first 50)
> warnings()
...
50: In eval(expr, envir, enclos) :
model fit failed for Fold10.Rep5: lambda=0, fraction=0.01 Error in enet(as.matrix(trainX), trainY, lambda = lmbda) :
Some of the columns of x have zero variance
请注意,上述示例中的任何共线性都只是对可重现示例进行子集化的结果(1,000 行与真实数据集中的 208,000 行)。
我已经通过各种方式检查了完整的数据集,包括 findLinearCombos
。请注意,数百个变量是从临床诊断中虚拟出来的,因此是二元变量,其中 1 的比例较低。
如何使用与 enet()` 完全相同的设置来运行 train(...,method="enet")?
再现性、 session 信息等数据
示例数据x
和y
为available here .
sessionInfo()
的结果:
R version 3.0.1 (2013-05-16)
Platform: x86_64-pc-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=C LC_COLLATE=C LC_MONETARY=C LC_MESSAGES=C LC_PAPER=C
[8] LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=C LC_IDENTIFICATION=C
attached base packages:
[1] parallel splines grid stats graphics grDevices utils datasets methods base
other attached packages:
[1] scales_0.2.3 elasticnet_1.1 fscaret_0.8.5.3 gsubfn_0.6-5 proto_0.3-10 lars_1.2 caret_5.17-7
[8] foreach_1.4.1 cluster_1.14.4 lubridate_1.3.0 HH_2.3-37 reshape_0.8.4 latticeExtra_0.6-24 leaps_2.9
[15] multcomp_1.2-18 perturb_2.05 Zelig_4.2-0 sandwich_2.2-10 zoo_1.7-10 survey_3.29-5 Hmisc_3.12-2
[22] survival_2.37-4 lme4_0.999999-2 bayesm_2.2-5 stargazer_4.0 pscl_1.04.4 vcd_1.2-13 colorspace_1.2-2
[29] mvtnorm_0.9-9995 car_2.0-18 nnet_7.3-7 gdata_2.13.2 gtools_3.0.0 spBayes_0.3-7 Formula_1.1-1
[36] magic_1.5-4 abind_1.4-0 MapGAM_0.6-2 gam_1.08 fields_6.7.6 maps_2.3-2 spam_0.29-3
[43] FNN_1.0 spatstat_1.31-3 mgcv_1.7-24 rgeos_0.2-19 RArcInfo_0.4-12 automap_1.0-12 gstat_1.0-16
[50] SDMTools_1.1-13 rgdal_0.8-10 spdep_0.5-60 coda_0.16-1 deldir_0.0-22 maptools_0.8-25 nlme_3.1-110
[57] MASS_7.3-27 Matrix_1.0-12 lattice_0.20-15 boot_1.3-9 data.table_1.8.8 xtable_1.7-1 RCurl_1.95-4.1
[64] bitops_1.0-5 RColorBrewer_1.0-5 testthat_0.7.1 codetools_0.2-8 devtools_1.3 stringr_0.6.2 foreign_0.8-54
[71] ggplot2_0.9.3.1 sp_1.0-11 taRifx_1.0.5 reshape2_1.2.2 plyr_1.8 functional_0.4 R.utils_1.25.2
[78] R.oo_1.13.9 R.methodsS3_1.4.4
loaded via a namespace (and not attached):
[1] LearnBayes_2.12 compiler_3.0.1 dichromat_2.0-0 digest_0.6.3 evaluate_0.4.4 gtable_0.1.2 httr_0.2 intervals_0.14.0 iterators_1.0.6
[10] labeling_0.2 memoise_0.1 munsell_0.4.2 rpart_4.1-1 spacetime_1.0-5 stats4_3.0.1 tcltk_3.0.1 tools_3.0.1 whisker_0.3-2
[19] xts_0.9-5
更新
在数据集的 15% 样本上运行:
Warning in eval(expr, envir, enclos) :
model fit failed for Fold10.Rep1: lambda=0, fraction=0.005
... (more of the same warning messages) ...
Warning in nominalTrainWorkflow(dat = trainData, info = trainInfo, method = met\
hod, :
There were missing values in resampled performance measures.
Error in if (lambda > 0) { : argument is of length zero
Calls: train ... train.default -> system.time -> createModel -> enet
X 矩阵有 806 列,其中 801 列为虚拟列。其中许多虚拟变量都极其稀疏(大约 25k 行中有 1-3 个观察值),其他变量的值为 TRUE 的 0.1-5%。总共有 108867 个 TRUE 和 21mm FALSE。
最佳答案
只是为了解决这个问题,我现在已经可以使用了。我删除了所有少于 20 个 TRUE
的列(请记住,这是从近 200k 观察中得出的),因为没有足够的信息可供贡献。这大约是其中的一半。
当我前进时,我必须小心这些稀疏列不会产生太多偏差等,但我希望通过使用一种进行变量选择的方法(套索、RF 等)问题就会减少。
感谢@O_Devinyak 的帮助。
关于r - enet() 有效,但通过 caret::train() 运行时无效,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19122617/
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
在我的设置中,我运行了一个脚本 火车一个模型并开始生成检查点。另一个脚本监视新的检查点和 评估 他们。脚本并行运行,因此评估只是训练之后的一步。 支持这种情况的正确 Tracks 配置是什么? 最佳答
什么是合理的设置?我可以在同一次执行中多次调用 Task.init() 吗? 最佳答案 免责声明:我是 allegro.ai Trains 团队的一员 一种解决方案是从 trains.automati
我想开始我的方式 ClearML (以前称为火车)。 我在documentation上看到的我需要在 ClearML 平台本身或使用 AWS 等的远程机器上运行服务器。 我真的很想绕过这个限制并在我的
我正在尝试使用 weka 的 MultilayerPerceptron 执行以下操作: 使用一小部分训练实例来训练一部分历元输入, 在剩余的周期中使用整组实例进行训练。 但是,当我在代码中执行以下操作
这个问题与对象检测有关,基本上是检测任何“已知”对象。例如,假设我有以下对象。 表格 瓶子。 相机 汽车 我将从所有这些单独的对象中拍摄 4 张照片。左边一个,右边一个,上下两个。我本来以为用这4张照
我已经编写了一段代码来训练Guassian过程回归模型来预测年龄。我已经编写了以下代码,并且运行良好:。但我注意到,每个纪元都输入了相同的数据,我认为这可能会导致过度拟合,所以我想使用Mini Bat
(一)、tf.train.Saver() (1). tf.train.Saver() 是用来保存tensorflow训练模型的,默认保存全部参数 (2). 用来加载参数,注:只加载存储在data
我是 PyTorch 的新手,我想知道您是否可以向我解释 PyTorch 中的默认 model.train() 与此处的 train() 函数之间的一些关键区别。 另一个 train() 函数位于关于
我可以在maskrcnn的预训练模型的基础上训练吗?如果预训练模型的类别与我自己的数据集不同,预训练模型仍然有效吗?。我尝试了一个新的班级训练数据集。但它似乎收敛得非常慢。
我可以按照Maskrcnn预先训练的模式进行训练吗?如果预先训练的模型的类别与我自己的数据集的类别不同,那么预先训练的模型是否仍然有效?。我尝试了一个新的班级训练数据集。但它似乎收敛得非常慢。
我想知道这两个 tensorflow 对象在用于训练神经网络时有什么区别? 最佳答案 Supervisor 即将被弃用,鼓励新用户使用 tf.train.FooSession 类 (来自 commen
我已经看到文档 tf.train.ExponentialMovingAverage 实现了这个公式: shadow_variable = decay * shadow_variable + (1 -
我发现在 Tensorflow 中有不同的方法来保存/恢复模型和变量。这些方式包括: tf.saved_model.simple_save tf.train.Checkpoint tf.train.S
查看两个带有参数的函数签名 tf.train.shuffle_batch_join( tensors_list, batch_size, capacity, min_after_dequeue, se
我使用 Binary data训练 DNN。 但是 tf.train.shuffle_batch 和 tf.train.batch 让我很困惑。 这是我的代码,我将对其进行一些测试。 首先Using_
正如文档/教程中提到的,我们可以调用 Estimator.fit()开始训练工作。 该方法所需的参数为 inputs这是对训练文件的 s3/file 引用。示例: estimator.fit({'tr
这个问题在这里已经有了答案: Split train data to train and validation by using tensorflow_datasets.load (TF 2.1) (
我知道这两个类都处理线程。根据文档,tf.train.Coordinator 协调一组线程的终止,而 tf.train.QueueRunner 保存队列的入队操作列表,每个操作都在一个线程中运行。 但
最近我读了this TensorFlow 中未记录特征的指南,因为我需要传递可变长度序列作为输入。但是,我发现 tf.train.SequenceExample 的协议(protocol)相对困惑(特
我是一名优秀的程序员,十分优秀!