gpt4 book ai didi

machine-learning - 如何使用 MFCC 系数向量训练机器学习算法?

转载 作者:行者123 更新时间:2023-11-30 08:25:54 26 4
gpt4 key购买 nike

对于我最后一年的项目,我试图实时识别狗/吠声/鸟的声音(通过录制声音剪辑)。我使用 MFCC 作为音频功能。最初,我使用 jAudio 库从声音剪辑中总共提取了 12 个 MFCC 矢量。现在我正在尝试训练机器学习算法(目前我还没有决定算法,但很可能是SVM)。声音片段大小约为 3 秒。我需要澄清有关此过程的一些信息。他们是,

  1. 我是否必须使用基于帧的 MFCC 来训练该算法(每帧 12 个)或基于整体剪辑的 MFCC(每个声音剪辑 12 个)?

  2. 要训练算法,我是否必须将所有 12 个 MFCC 视为 12 个不同的属性,还是必须将这 12 个 MFCC 视为一个属性?

这些 MFCC 是剪辑的整体 MFCCS,

-9.598802712290967 -21.644963856237265 -7.405551798816725 -11.638107212413201 -19.441831623156144 -2.780967392843105 -0.57 92847321137902 -13.14237288849559 -4.920408873192934 -2.7111507999281925 -7.336670942457227 2.4687330348335212

任何帮助克服这些问题的帮助都将不胜感激。我在谷歌上找不到好的帮助。 :)

最佳答案

  1. 您应该计算每帧的 MFCC。由于您的信号随时间变化,因此将它们放在整个剪辑上是没有意义的。更糟糕的是,您最终可能会得到具有相似表示的狗和鸟。我会尝试几种帧长度。一般来说,它们将以毫秒为单位。

  2. 所有这些都应该是单独的功能。让机器学习算法决定最好的预测器。

请注意,MFCC 对噪音很敏感,因此请先检查您的样本听起来如何。例如,可以提供更丰富的用于提取的音频特征选择。 Yaafe library ,其中许多将更适合您的情况。具体是哪个?以下是我发现对鸟类叫声分类最有用的内容:

  • 光谱平坦度
  • 感知传播
  • 光谱滚降
  • 光谱减少
  • 光谱形状统计
  • 光谱斜率
  • 线性预测编码 (LPC)
  • 线谱对 (LSP)

也许您可能会感兴趣查看 this project ,尤其是我与 Yaafe 交互的部分。

早在我使用 SVM 的时候,正如您所计划的那样。今天我肯定会选择梯度提升。

关于machine-learning - 如何使用 MFCC 系数向量训练机器学习算法?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35253243/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com