- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这可能是 Tensorflow: How to get gradients per instance in a batch? 的重复项。无论如何我都会问这个问题,因为还没有一个令人满意的答案,而且这里的目标有点不同。
我有一个非常大的网络,可以安装在我的 GPU 上,但我可以提供的最大批量大小是 32。任何大于该大小的网络都会导致 GPU 内存不足。我想使用更大的批处理以获得更准确的梯度近似值。
具体来说,假设我想通过依次输入 3 批 32 的数据来计算一大批 96 的梯度。据我所知,最好的方法是使用 Optimizer.compute_gradients() 和 Optimizer.apply_gradients()。这是一个小例子,它是如何工作的
import tensorflow as tf
import numpy as np
learn_rate = 0.1
W_init = np.array([ [1,2,3], [4,5,6], [7,8,9] ], dtype=np.float32)
x_init = np.array([ [11,12,13], [14,15,16], [17,18,19] ], dtype=np.float32)
X = tf.placeholder(dtype=np.float32, name="x")
W = tf.Variable(W_init, dtype=np.float32, name="w")
y = tf.matmul(X, W, name="y")
loss = tf.reduce_mean(y, name="loss")
opt = tf.train.GradientDescentOptimizer(learn_rate)
grad_vars_op = opt.compute_gradients(loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# Compute the gradients for each batch
grads_vars1 = sess.run(grad_vars_op, feed_dict = {X: x_init[None,0]})
grads_vars2 = sess.run(grad_vars_op, feed_dict = {X: x_init[None,1]})
grads_vars3 = sess.run(grad_vars_op, feed_dict = {X: x_init[None,2]})
# Separate the gradients from the variables
grads1 = [ grad for grad, var in grads_vars1 ]
grads2 = [ grad for grad, var in grads_vars2 ]
grads3 = [ grad for grad, var in grads_vars3 ]
varl = [ var for grad, var in grads_vars1 ]
# Average the gradients
grads = [ (g1 + g2 + g3)/3 for g1, g2, g3 in zip(grads1, grads2, grads3)]
sess.run(opt.apply_gradients(zip(grads,varl)))
print("Weights after 1 gradient")
print(sess.run(W))
现在这一切都非常难看且效率低下,因为前向传递正在 GPU 上运行,而平均梯度发生在 CPU 上,然后再次应用它们发生在 GPU 上。
此外,此代码会引发异常,因为 grads
是一个 np.array
列表,要使其工作,必须创建一个 tf每个渐变的.placeholder
。
我确信应该有更好、更有效的方法来做到这一点?有什么建议吗?
最佳答案
您可以创建trainable_variables
的副本并累积批量梯度。以下是一些需要遵循的简单步骤
...
opt = tf.train.GradientDescentOptimizer(learn_rate)
# constant to scale sum of gradient
const = tf.constant(1/n_batches)
# get all trainable variables
t_vars = tf.trainable_variables()
# create a copy of all trainable variables with `0` as initial values
accum_tvars = [tf.Variable(tf.zeros_like(tv.initialized_value()),trainable=False) for t_var in t_vars]
# create a op to initialize all accums vars
zero_ops = [tv.assign(tf.zeros_like(tv)) for tv in accum_tvars]
# compute gradients for a batch
batch_grads_vars = opt.compute_gradients(loss, t_vars)
# collect the (scaled by const) batch gradient into accumulated vars
accum_ops = [accum_tvars[i].assign_add(tf.scalar_mul(const, batch_grad_var[0]) for i, batch_grad_var in enumerate(batch_grads_vars)]
# apply accums gradients
train_step = opt.apply_gradients([(accum_tvars[i], batch_grad_var[1]) for i, batch_grad_var in enumerate(batch_grads_vars)])
# train_step = opt.apply_gradients(zip(accum_tvars, zip(*batch_grads_vars)[1])
while True:
# initialize the accumulated gards
sess.run(zero_ops)
# number of batches for gradient accumulation
n_batches = 3
for i in xrange(n_batches):
sess.run(accum_ops, feed_dict={X: x_init[:, i]})
sess.run(train_step)
关于machine-learning - 几个批处理的 TensorFlow 平均梯度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45987156/
我正在尝试调整 tf DeepDream 教程代码以使用另一个模型。现在当我调用 tf.gradients() 时: t_grad = tf.gradients(t_score, t_input)[0
考虑到 tensorflow 中 mnist 上的一个简单的小批量梯度下降问题(就像在这个 tutorial 中),我如何单独检索批次中每个示例的梯度。 tf.gradients()似乎返回批次中所有
当我在 numpy 中计算屏蔽数组的梯度时 import numpy as np import numpy.ma as ma x = np.array([100, 2, 3, 5, 5, 5, 10,
除了数值计算之外,是否有一种快速方法来获取协方差矩阵(我的网络激活)的导数? 我试图将其用作深度神经网络中成本函数中的惩罚项,但为了通过我的层反向传播误差,我需要获得导数。 在Matlab中,如果“a
我有一个计算 3D 空间标量场值的函数,所以我为它提供 x、y 和 z 坐标(由 numpy.meshgrid 获得)的 3D 张量,并在各处使用元素运算。这按预期工作。 现在我需要计算标量场的梯度。
我正在使用内核密度估计 (KDE) ( http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.htm
我对 tensorflow gradient documentation 中的示例感到困惑用于计算梯度。 a = tf.constant(0.) b = 2 * a g = tf.gradients(
我有一个 softmax 层(只有激活本身,没有将输入乘以权重的线性部分),我想对其进行向后传递。 我找到了很多关于 SO 的教程/答案来处理它,但它们似乎都使用 X 作为 (1, n_inputs)
仅供引用,我正在尝试使用 Tensorflow 实现梯度下降算法。 我有一个矩阵X [ x1 x2 x3 x4 ] [ x5 x6 x7 x8 ] 我乘以一些特征向量 Y 得到 Z [ y
我目前有一个由几百万个不均匀分布的粒子组成的体积,每个粒子都有一个属性(对于那些好奇的人来说是潜在的),我想为其计算局部力(加速度)。 np.gradient 仅适用于均匀间隔的数据,我在这里查看:S
我正在寻找有关如何实现 Gradient (steepest) Descent 的建议在 C 中。我正在寻找 f(x)=||Ax-y||^2 的最小值,其中给出了 A(n,n) 和 y(n)。 这在
我正在查看 SVM 损失和导数的代码,我确实理解了损失,但我无法理解如何以矢量化方式计算梯度 def svm_loss_vectorized(W, X, y, reg): loss = 0.0 dW
我正在寻找一种有效的方法来计算 Julia 中多维数组的导数。准确地说,我想要一个等效的 numpy.gradient在 Julia 。但是,Julia 函数 diff : 仅适用于二维数组 沿微分维
我在cathesian 2D 系统中有两个点,它们都给了我向量的起点和终点。现在我需要新向量和 x 轴之间的角度。 我知道梯度 = (y2-y1)/(x2-x1) 并且我知道角度 = arctan(g
我有一个 2D 数组正弦模式,想要绘制该函数的 x 和 y 梯度。我有一个二维数组 image_data : def get_image(params): # do some maths on
假设我有一个针对 MNIST 数据的简单 TensorFlow 模型,如下所示 import tensorflow as tf from tensorflow.examples.tutorials.m
我想查看我的 Tensorflow LSTM 随时间变化的梯度,例如,绘制从 t=N 到 t=0 的梯度范数。问题是,如何从 Tensorflow 中获取每个时间步长的梯度? 最佳答案 在图中定义:
我有一个简单的神经网络,我试图通过使用如下回调使用张量板绘制梯度: class GradientCallback(tf.keras.callbacks.Callback): console =
在CIFAR-10教程中,我注意到变量被放置在CPU内存中,但它在cifar10-train.py中有说明。它是使用单个 GPU 进行训练的。 我很困惑..图层/激活是否存储在 GPU 中?或者,梯度
我有一个 tensorflow 模型,其中层的输出是二维张量,例如 t = [[1,2], [3,4]] . 下一层需要一个由该张量的每一行组合组成的输入。也就是说,我需要把它变成t_new = [[
我是一名优秀的程序员,十分优秀!