- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我最近一直在尝试了解 Apache Spark 作为 Scikit Learn 的替代品,但在我看来,即使在简单的情况下,Scikit 收敛到准确模型的速度也远远快于 Spark。例如,我使用以下脚本为一个非常简单的线性函数 (z=x+y) 生成了 1000 个数据点:
from random import random
def func(in_vals):
'''result = x (+y+z+w....)'''
result = 0
for v in in_vals:
result += v
return result
if __name__ == "__main__":
entry_count = 1000
dim_count = 2
in_vals = [0]*dim_count
with open("data_yequalsx.csv", "w") as out_file:
for entry in range(entry_count):
for i in range(dim_count):
in_vals[i] = random()
out_val = func(in_vals)
out_file.write(','.join([str(x) for x in in_vals]))
out_file.write(",%s\n" % str(out_val))
然后我运行了以下 Scikit 脚本:
import sklearn
from sklearn import linear_model
import numpy as np
data = []
target = []
with open("data_yequalsx.csv") as inFile:
for row in inFile:
vals = row.split(",")
data.append([float(x) for x in vals[:-1]])
target.append(float(vals[-1]))
test_samples= len(data)/10
train_data = [0]*(len(data) - test_samples)
train_target = [0]*(len(data) - test_samples)
test_data = [0]*(test_samples)
test_target = [0]*(test_samples)
train_index = 0
test_index = 0
for j in range(len(data)):
if j >= test_samples:
train_data[train_index] = data[j]
train_target[train_index] = target[j]
train_index += 1
else:
test_data[test_index] = data[j]
test_target[test_index] = target[j]
test_index += 1
model = linear_model.SGDRegressor(n_iter=100, learning_rate="invscaling", eta0=0.0001, power_t=0.5, penalty="l2", alpha=0.0001, loss="squared_loss")
model.fit(train_data, train_target)
print(model.coef_)
print(model.intercept_)
result = model.predict(test_data)
mse = np.mean((result - test_target) ** 2)
print("Mean Squared Error = %s" % str(mse))
然后是这个 Spark 脚本:(使用 Spark-submit ,没有其他参数)
from pyspark.mllib.regression import LinearRegressionWithSGD, LabeledPoint
from pyspark import SparkContext
sc = SparkContext (appName="mllib_simple_accuracy")
raw_data = sc.textFile ("data_yequalsx.csv", minPartitions=10) #MinPartitions doesnt guarantee that you get that many partitions, just that you wont have fewer than that many partitions
data = raw_data.map(lambda line: [float(x) for x in line.split (",")]).map(lambda entry: LabeledPoint (entry[-1], entry[:-1])).zipWithIndex()
test_samples= data.count()/10
training_data = data.filter(lambda (entry, index): index >= test_samples).map(lambda (lp,index): lp)
test_data = data.filter(lambda (entry, index): index < test_samples).map(lambda (lp,index): lp)
model = LinearRegressionWithSGD.train(training_data, step=0.01, iterations=100, regType="l2", regParam=0.0001, intercept=True)
print(model._coeff)
print(model._intercept)
mse = (test_data.map(lambda lp: (lp.label - model.predict(lp.features))**2 ).reduce(lambda x,y: x+y))/test_samples;
print("Mean Squared Error: %s" % str(mse))
sc.stop ()
奇怪的是,spark 给出的误差比 Scikit 给出的误差大一个数量级(分别为 0.185 和 0.045),尽管这两个模型具有几乎相同的设置(据我所知)我知道这是使用 SGD 进行很少的迭代,因此结果可能会有所不同,但我不会想到会有如此大的差异或如此大的误差,特别是考虑到异常简单的数据。
<小时/>我对 Spark 有什么误解吗?是不是配置不正确?当然我应该得到比这更小的错误?
最佳答案
SGD,代表随机梯度下降,是一种在线凸优化算法,因此很难并行化,因为它每次迭代都会进行一次更新(有更智能的变体,例如带有小批量的 SGD,但仍然不是很聪明)适合并行环境。
另一方面,批处理算法,例如 L-BFGS,我建议您与 Spark (LogigisticRegressionWithLBFGS) 一起使用,可以轻松并行化,因为它在每个时期进行迭代(它需要查看所有数据点,计算每个点的损失函数的值和梯度,然后进行聚合计算完整的梯度)。
Python 在单机上运行,因此 SGD 性能良好。
顺便说一句,如果你查看 MLlib 代码,scikit learn 的 lambda 相当于 lambda/数据集的大小(mllib 优化 1/n*sum(l_i(x_i,f(y_i)) + lambda
而 scikit learn 则优化 sum(l_i(x_i,f(y_i)) + lambda
关于apache-spark - Apache Spark 是否不如 Scikit Learn 准确?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28076232/
来自文档: sklearn.preprocessing.MinMaxScaler.min_ : ndarray, shape (n_features,) Per feature adjustment
这是我的数据:(我重置了索引。日期应该是索引) Date A B C D 0 2013-10-07 -0.002
我正在构建一个分类器,通过贷款俱乐部数据,选择最好的 X 笔贷款。我训练了一个随机森林,并创建了通常的 ROC 曲线、混淆矩阵等。 混淆矩阵将分类器的预测(森林中树木的多数预测)作为参数。但是,我希望
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我有一个预定义的决策树,它是根据基于知识的拆分构建的,我想用它来进行预测。我可以尝试从头开始实现决策树分类器,但那样我就无法在 Scikit 函数中使用 predict 等内置函数。有没有办法将我的树
我正在使用随机森林解决分类问题。为此,我决定使用 Python 库 scikit-learn。但我对随机森林算法和这个工具都很陌生。我的数据包含许多因子变量。我用谷歌搜索,发现像我们在线性回归中所做的
我使用 Keras 回归器对数据进行回归拟合。我使用 Scikit-learn wrapper 和 Pipeline 来首先标准化数据,然后将其拟合到 Keras 回归器上。有点像这样: from s
在 scikit-learn ,有一个 的概念评分函数 .如果我们有一些预测标签和真实标签,我们可以通过调用 scoring(y_true, y_predict) 来获得分数。 .这种评分函数的一个例
我知道 train_test_split 方法将数据集拆分为随机训练和测试子集。并且使用 random_state=int 可以确保每次调用该方法时我们对该数据集都有相同的拆分。 我的问题略有不同。
我正在使用 scikit-learn 0.18.dev0。我知道之前有人问过完全相同的问题 here .我尝试了那里提供的答案,但出现以下错误 >>> def mydist(x, y): ...
我试图在 scikit-learn 中结合递归特征消除和网格搜索。正如您从下面的代码(有效)中看到的那样,我能够从网格搜索中获得最佳估计量,然后将该估计量传递给 RFECV。但是,我宁愿先进行 RFE
我是一名优秀的程序员,十分优秀!