- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
人们经常使用 IR、ML 和数据挖掘等术语,但我注意到它们之间有很多重叠。
对于在这些领域有经验的人来说,这之间的界限到底是什么?
最佳答案
这只是一个人(受过 ML 正式培训)的观点;其他人可能会以完全不同的方式看待事物。
机器学习可能是这三个术语中最同质的,也是应用最一致的——它仅限于模式提取 (或模式匹配)算法本身。
在您提到的术语中,“机器学习”是学术部门最常用于描述其类(class)、学术部门和研究项目的术语,也是学术期刊和 session 记录中最常用的术语。 ML 显然是您提到的术语中最不依赖上下文的。
信息检索和数据挖掘更接近于描述完整的商业流程——即从用户查询到检索/交付相关信息结果。机器学习算法可能位于该流程中的某个位置,并且在更复杂的应用程序中通常是这样,但这不是正式要求。此外,术语“数据挖掘”似乎通常是指在“大数据”(即 > 2BG)上应用某些流程,因此通常包括分布式处理(映射) reduce) 靠近该工作流程前端的组件。
因此,信息检索(IR)和数据挖掘(DM)以基础设施算法的方式与机器学习(ML)相关。换句话说,机器学习是用于解决信息检索问题的工具来源之一。但这只是工具来源之一。但 IR 并不依赖于 ML,例如,特定的 IR 项目可能是响应用户的搜索查询 IR 来存储和快速检索完全索引的数据,其关键在于优化数据流的性能,即,从查询到将搜索结果交付给用户的往返过程。预测或模式匹配在这里可能没有用。同样,DM 项目可能会使用 ML 算法作为预测引擎,但 DM 项目更有可能还关注整个处理流程,例如,用于高效输入大量数据(TB 或 TB)的并行计算技术),它将原始结果传递给处理引擎,用于计算变量(列)的描述性统计数据(平均值、标准差、分布等)。
最后考虑一下 Netflix 奖。本次竞赛仅针对机器学习,重点是预测算法,这一点可以从以下事实证明:只有一个成功标准:算法返回的预测的准确性。想象一下,如果“Netflix 奖”被重新命名为数据挖掘竞赛。成功标准几乎肯定会扩展,以便更准确地评估算法在实际商业环境中的性能 - 因此,例如总体执行速度(向用户提供建议的速度有多快)可能会与准确性一起考虑。
术语“信息检索”和“数据挖掘”现在已成为主流使用,尽管有一段时间我只在我的工作描述或供应商文献中看到这些术语(通常在“解决方案”一词旁边)。雇主,我们最近聘请了一位“数据挖掘”分析师。我不知道他具体做什么,但他每天都打领带上类。
关于machine-learning - 信息检索 (IR)、数据挖掘、机器学习 (ML),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/3417709/
基本上,我的问题是,由于无监督学习是机器学习的一种,是否需要机器“学习”的某些方面并根据其发现进行改进?例如,如果开发了一种算法来获取未标记的图像并找到它们之间的关联,那么它是否需要根据这些关联来改进
生成模型和判别模型似乎可以学习条件 P(x|y) 和联合 P(x,y) 概率分布。但从根本上讲,我无法说服自己“学习概率分布”意味着什么。 最佳答案 这意味着您的模型要么充当训练样本的分布估计器,要么
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
是否Scikit-learn支持迁移学习?请检查以下代码。 型号 clf由 fit(X,y) 获取 jar 头型号clf2在clf的基础上学习和转移学习 fit(X2,y2) ? >>> from s
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在使用基于 rlglue 的 python-rl q 学习框架。 我的理解是,随着情节的发展,算法会收敛到一个最优策略(这是一个映射,说明在什么状态下采取什么行动)。 问题 1:这是否意味着经过若
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我正在尝试离散数据以进行分类。它们的值是字符串,我将它们转换为数字 0,1,2,3。 这就是数据的样子(pandas 数据框)。我已将数据帧拆分为 dataLabel 和 dataFeatures L
每当我开始拥有更多的类(1000 或更多)时,MultinominalNB 就会变得非常慢并且需要 GB 的 RAM。对于所有支持 .partial_fit()(SGDClassifier、Perce
我需要使用感知器算法来研究一些非线性可分数据集的学习率和渐近误差。 为了做到这一点,我需要了解构造函数的一些参数。我花了很多时间在谷歌上搜索它们,但我仍然不太明白它们的作用或如何使用它们。 给我带来更
我知道作为功能 ordinal data could be assigned arbitrary numbers and OneHotEncoding could be done for catego
这是一个示例,其中有逐步的过程使系统学习并对输入数据进行分类。 它对给定的 5 个数据集域进行了正确分类。此外,它还对停用词进行分类。 例如 输入:docs_new = ['上帝就是爱', '什么在哪
我有一个 scikit-learn 模型,它简化了一点,如下所示: clf1 = RandomForestClassifier() clf1.fit(data_training, non_binary
我是一名优秀的程序员,十分优秀!