- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我实现了梯度下降算法来最小化成本函数,以获得确定图像是否具有良好质量的假设。我在 Octave 中这样做了。这个想法在某种程度上基于 machine learning class 中的算法。作者:吴恩达
因此,我有 880 个值“y”,其中包含从 0.5 到 ~12 的值。我在“X”中有 880 个从 50 到 300 的值,可以预测图像的质量。
遗憾的是,该算法似乎失败了,经过几次迭代后,theta 的值非常小,以至于 theta0 和 theta1 变成“NaN”。我的线性回归曲线有奇怪的值......
这里是梯度下降算法的代码:(theta = Zeros(2, 1);
,alpha= 0.01,迭代=1500)
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
tmp_j1=0;
for i=1:m,
tmp_j1 = tmp_j1+ ((theta (1,1) + theta (2,1)*X(i,2)) - y(i));
end
tmp_j2=0;
for i=1:m,
tmp_j2 = tmp_j2+ (((theta (1,1) + theta (2,1)*X(i,2)) - y(i)) *X(i,2));
end
tmp1= theta(1,1) - (alpha * ((1/m) * tmp_j1))
tmp2= theta(2,1) - (alpha * ((1/m) * tmp_j2))
theta(1,1)=tmp1
theta(2,1)=tmp2
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end
这是成本函数的计算:
function J = computeCost(X, y, theta) %
m = length(y); % number of training examples
J = 0;
tmp=0;
for i=1:m,
tmp = tmp+ (theta (1,1) + theta (2,1)*X(i,2) - y(i))^2; %differenzberechnung
end
J= (1/(2*m)) * tmp
end
最佳答案
如果您想知道如何将看似复杂的 for
循环向量化并压缩为单个单行表达式,那么请继续阅读。矢量化形式为:
theta = theta - (alpha/m) * (X' * (X * theta - y))
下面详细解释了我们如何使用梯度下降算法得到这个向量化表达式:
假设给出以下 X、y 和 θ 值:
这里
此外,
h(x) = ([X] * [θ])
(训练集的预测值的 m x 1 矩阵)h(x)-y = ([X] * [θ] - [y])
(我们的预测误差的 m x 1 矩阵)机器学习的整个目标是最小化预测中的错误。根据上述推论,我们的错误矩阵是 m x 1
向量矩阵,如下所示:
要计算 θj 的新值,我们必须获得所有误差(m 行)乘以训练的第 jth 个特征值的总和即,取出E中的所有值,分别与相应训练示例的第j个特征相乘,然后将它们全部相加。这将帮助我们获得 θj 的新值(希望更好)。对所有 j 个或多个特征重复此过程。用矩阵形式可以写成:
[E]' x [X]
将为我们提供一个行向量矩阵,因为 E' 是 1 x m 矩阵,X 是 m x n 矩阵。但我们感兴趣的是获得一个列矩阵,因此我们转置结果矩阵。由于(A * B)' = (B' * A')
和A'' = A
,我们也可以将上面写为
这是我们开始时的原始表达式:
theta = theta - (alpha/m) * (X' * (X * theta - y))
关于machine-learning - 梯度下降似乎失败了,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/10479353/
我正在尝试调整 tf DeepDream 教程代码以使用另一个模型。现在当我调用 tf.gradients() 时: t_grad = tf.gradients(t_score, t_input)[0
考虑到 tensorflow 中 mnist 上的一个简单的小批量梯度下降问题(就像在这个 tutorial 中),我如何单独检索批次中每个示例的梯度。 tf.gradients()似乎返回批次中所有
当我在 numpy 中计算屏蔽数组的梯度时 import numpy as np import numpy.ma as ma x = np.array([100, 2, 3, 5, 5, 5, 10,
除了数值计算之外,是否有一种快速方法来获取协方差矩阵(我的网络激活)的导数? 我试图将其用作深度神经网络中成本函数中的惩罚项,但为了通过我的层反向传播误差,我需要获得导数。 在Matlab中,如果“a
我有一个计算 3D 空间标量场值的函数,所以我为它提供 x、y 和 z 坐标(由 numpy.meshgrid 获得)的 3D 张量,并在各处使用元素运算。这按预期工作。 现在我需要计算标量场的梯度。
我正在使用内核密度估计 (KDE) ( http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.htm
我对 tensorflow gradient documentation 中的示例感到困惑用于计算梯度。 a = tf.constant(0.) b = 2 * a g = tf.gradients(
我有一个 softmax 层(只有激活本身,没有将输入乘以权重的线性部分),我想对其进行向后传递。 我找到了很多关于 SO 的教程/答案来处理它,但它们似乎都使用 X 作为 (1, n_inputs)
仅供引用,我正在尝试使用 Tensorflow 实现梯度下降算法。 我有一个矩阵X [ x1 x2 x3 x4 ] [ x5 x6 x7 x8 ] 我乘以一些特征向量 Y 得到 Z [ y
我目前有一个由几百万个不均匀分布的粒子组成的体积,每个粒子都有一个属性(对于那些好奇的人来说是潜在的),我想为其计算局部力(加速度)。 np.gradient 仅适用于均匀间隔的数据,我在这里查看:S
我正在寻找有关如何实现 Gradient (steepest) Descent 的建议在 C 中。我正在寻找 f(x)=||Ax-y||^2 的最小值,其中给出了 A(n,n) 和 y(n)。 这在
我正在查看 SVM 损失和导数的代码,我确实理解了损失,但我无法理解如何以矢量化方式计算梯度 def svm_loss_vectorized(W, X, y, reg): loss = 0.0 dW
我正在寻找一种有效的方法来计算 Julia 中多维数组的导数。准确地说,我想要一个等效的 numpy.gradient在 Julia 。但是,Julia 函数 diff : 仅适用于二维数组 沿微分维
我在cathesian 2D 系统中有两个点,它们都给了我向量的起点和终点。现在我需要新向量和 x 轴之间的角度。 我知道梯度 = (y2-y1)/(x2-x1) 并且我知道角度 = arctan(g
我有一个 2D 数组正弦模式,想要绘制该函数的 x 和 y 梯度。我有一个二维数组 image_data : def get_image(params): # do some maths on
假设我有一个针对 MNIST 数据的简单 TensorFlow 模型,如下所示 import tensorflow as tf from tensorflow.examples.tutorials.m
我想查看我的 Tensorflow LSTM 随时间变化的梯度,例如,绘制从 t=N 到 t=0 的梯度范数。问题是,如何从 Tensorflow 中获取每个时间步长的梯度? 最佳答案 在图中定义:
我有一个简单的神经网络,我试图通过使用如下回调使用张量板绘制梯度: class GradientCallback(tf.keras.callbacks.Callback): console =
在CIFAR-10教程中,我注意到变量被放置在CPU内存中,但它在cifar10-train.py中有说明。它是使用单个 GPU 进行训练的。 我很困惑..图层/激活是否存储在 GPU 中?或者,梯度
我有一个 tensorflow 模型,其中层的输出是二维张量,例如 t = [[1,2], [3,4]] . 下一层需要一个由该张量的每一行组合组成的输入。也就是说,我需要把它变成t_new = [[
我是一名优秀的程序员,十分优秀!