gpt4 book ai didi

java - 有和没有Executor的多线程之间的区别

转载 作者:行者123 更新时间:2023-11-30 07:27:35 24 4
gpt4 key购买 nike

我试图找出普通多线程和使用执行器的多线程(维护线程池)之间的性能差异。

以下是两者的代码示例。

没有执行程序代码(多线程):

import java.lang.management.ManagementFactory;
import java.lang.management.MemoryPoolMXBean;
import java.lang.management.MemoryUsage;
import java.lang.management.ThreadMXBean;
import java.util.List;

public class Demo1 {
public static void main(String arg[]) {
Demo1 demo = new Demo1();
Thread t5 = new Thread(new Runnable() {
public void run() {
int count=0;
// Thread.State;
// System.out.println("ClientMsgReceiver started-----");
Demo1.ChildDemo obj = new Demo1.ChildDemo();
while(true) {

// System.out.println("Threadcount is"+Thread);
// System.out.println("count is"+(count++));
Thread t=new Thread(obj);
t.start();
ThreadMXBean tb = ManagementFactory.getThreadMXBean();
List<MemoryPoolMXBean> pools = ManagementFactory.getMemoryPoolMXBeans();
for (MemoryPoolMXBean pool : pools) {
MemoryUsage peak = pool.getPeakUsage();
System.out.format("Peak %s memory used: %,d%n",
pool.getName(), peak.getUsed());
System.out.format("Peak %s memory reserved: %,d%n",
pool.getName(), peak.getCommitted());
}

System.out.println("Current Thread Count"+ tb.getThreadCount());
System.out.println("Peak Thread Count"+ tb.getPeakThreadCount());
System.out.println("Current_Thread_Cpu_Time "
+ tb.getCurrentThreadCpuTime());
System.out.println("Daemon Thread Count" +tb.getDaemonThreadCount());
}
// ChatLogin = new ChatLogin();
}
});
t5.start();
}

static class ChildDemo implements Runnable {
public void run() {
try {
// System.out.println("Thread Started with custom Run method");
Thread.sleep(100000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
finally {
System.out.println("A" +Thread.activeCount());
}
}
}
}

与执行器(多线程):

import java.lang.management.ManagementFactory;
import java.lang.management.MemoryPoolMXBean;
import java.lang.management.MemoryUsage;
import java.lang.management.ThreadMXBean;
import java.util.List;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class Executor_Demo {
public static void main(String arg[]) {
BlockingQueue<Runnable> queue = new ArrayBlockingQueue<Runnable>(10);
ThreadPoolExecutor executor = new ThreadPoolExecutor(
10, 100, 10, TimeUnit.MICROSECONDS, queue);
Executor_Demo demo = new Executor_Demo();

executor.execute(new Runnable() {
public void run() {
int count=0;
// System.out.println("ClientMsgReceiver started-----");
Executor_Demo.Demo demo2 = new Executor_Demo.Demo();
BlockingQueue<Runnable> queue1 = new ArrayBlockingQueue<Runnable>(1000);
ThreadPoolExecutor executor1 = new ThreadPoolExecutor(
1000, 10000, 10, TimeUnit.MICROSECONDS, queue1);

while(true) {
// System.out.println("Threadcount is"+Thread);
// System.out.println("count is"+(count++));
Runnable command= new Demo();
// executor1.execute(command);
executor1.submit(command);
// Thread t=new Thread(demo2);
// t.start();
ThreadMXBean tb = ManagementFactory.getThreadMXBean();
/* try {
executor1.awaitTermination(100, TimeUnit.MICROSECONDS);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} */
List<MemoryPoolMXBean> pools = ManagementFactory.getMemoryPoolMXBeans();
for (MemoryPoolMXBean pool : pools) {
MemoryUsage peak = pool.getPeakUsage();
System.out.format("Peak %s memory used: %,d%n",
pool.getName(), peak.getUsed());
System.out.format("Peak %s memory reserved: %,d%n",
pool.getName(), peak.getCommitted());
}
System.out.println("daemon threads"+tb.getDaemonThreadCount());
System.out.println("All threads"+tb.getAllThreadIds());
System.out.println("current thread CPU time "
+ tb.getCurrentThreadCpuTime());
System.out.println("current thread user time "
+ tb.getCurrentThreadUserTime());
System.out.println("Total started thread count "
+ tb.getTotalStartedThreadCount());
System.out.println("Current Thread Count"+ tb.getThreadCount());
System.out.println("Peak Thread Count"+ tb.getPeakThreadCount());
System.out.println("Current_Thread_Cpu_Time "
+ tb.getCurrentThreadCpuTime());
System.out.println("Daemon Thread Count"
+ tb.getDaemonThreadCount());
// executor1.shutdown();
}
//ChatLogin = new ChatLogin();
}
});
executor.shutdown();
}

static class Demo implements Runnable {
public void run() {
try {
// System.out.println("Thread Started with custom Run method");
Thread.sleep(100000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
finally {
System.out.println("A" +Thread.activeCount());
}
}
}
}

示例输出 Output

当我运行这两个程序时,事实证明执行程序比普通的多线程更昂贵。为什么会这样?

鉴于此,executor 到底有什么用?我们使用执行器来管理线程池。

我本以为执行器会给出比普通多线程更好的结果。

基本上我这样做是因为我需要处理数百万使用多线程套接字编程的客户端。

任何建议都会有所帮助。

最佳答案

为了了解事物的规模,我会尽量将监控成本​​保持在最低水平,并且我会比较一个小数字和一个大数字。

public class Executor_Demo {
public static void main(String... arg) throws ExecutionException, InterruptedException {
int nThreads = 5100;
ExecutorService executor = Executors.newFixedThreadPool(nThreads, new DaemonThreadFactory());

List<Future<Results>> futures = new ArrayList<Future<Results>>();
for (int i = 0; i < nThreads; i++) {
futures.add(executor.submit(new BackgroundCallable()));
}
Results result = new Results();
for (Future<Results> future : futures) {
result.merge(future.get());
}
executor.shutdown();

result.print(System.out);

}

static class Results {
private long cpuTime;
private long userTime;

Results() {
final ThreadMXBean tb = ManagementFactory.getThreadMXBean();
cpuTime = tb.getCurrentThreadCpuTime();
userTime = tb.getCurrentThreadUserTime();
}


public void merge(Results results) {
cpuTime += results.cpuTime;
userTime += results.userTime;
}

public void print(PrintStream out) {
ThreadMXBean tb = ManagementFactory.getThreadMXBean();

List<MemoryPoolMXBean> pools = ManagementFactory.getMemoryPoolMXBeans();
for (int i = 0, poolsSize = pools.size(); i < poolsSize; i++) {
MemoryPoolMXBean pool = pools.get(i);
MemoryUsage peak = pool.getPeakUsage();
out.format("Peak %s memory used:\t%,d%n", pool.getName(), peak.getUsed());
out.format("Peak %s memory reserved:\t%,d%n", pool.getName(), peak.getCommitted());
}

out.println("Total thread CPU time\t" + cpuTime);
out.println("Total thread user time\t" + userTime);
out.println("Total started thread count\t" + tb.getTotalStartedThreadCount());
out.println("Current Thread Count\t" + tb.getThreadCount());
out.println("Peak Thread Count\t" + tb.getPeakThreadCount());
out.println("Daemon Thread Count\t" + tb.getDaemonThreadCount());
}
}

static class DaemonThreadFactory implements ThreadFactory {
@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
t.setDaemon(true);
return t;
}
}

static class BackgroundCallable implements Callable<Results> {
@Override
public Results call() throws Exception {
Thread.sleep(100);
return new Results();
}
}
}

当使用 -XX:MaxNewSize=64m 进行测试时(这限制了临时内存空间的大小将增加)

100 threads
Peak Code Cache memory used: 386,880
Peak Code Cache memory reserved: 2,555,904
Peak PS Eden Space memory used: 41,280,984
Peak PS Eden Space memory reserved: 50,331,648
Peak PS Survivor Space memory used: 0
Peak PS Survivor Space memory reserved: 8,388,608
Peak PS Old Gen memory used: 0
Peak PS Old Gen memory reserved: 192,675,840
Peak PS Perm Gen memory used: 3,719,616
Peak PS Perm Gen memory reserved: 21,757,952
Total thread CPU time 20000000
Total thread user time 20000000
Total started thread count 105
Current Thread Count 93
Peak Thread Count 105
Daemon Thread Count 92

5100 threads
Peak Code Cache memory used: 425,728
Peak Code Cache memory reserved: 2,555,904
Peak PS Eden Space memory used: 59,244,544
Peak PS Eden Space memory reserved: 59,244,544
Peak PS Survivor Space memory used: 2,949,152
Peak PS Survivor Space memory reserved: 8,388,608
Peak PS Old Gen memory used: 3,076,400
Peak PS Old Gen memory reserved: 192,675,840
Peak PS Perm Gen memory used: 3,787,096
Peak PS Perm Gen memory reserved: 21,757,952
Total thread CPU time 810000000
Total thread user time 150000000
Total started thread count 5105
Current Thread Count 5105
Peak Thread Count 5105
Daemon Thread Count 5104

主要增加是老一代使用的增加 ~ 3 MB 或每个线程约 6 KB。 CPU 使用时间为 956 毫秒或每个线程约 0.2 毫秒。


在第一个示例中,您创建了一个线程,在第二个示例中,您创建了 1000 个。

您正在执行的输出似乎是大部分工作,并且在第二种情况下您的输出比第一种情况多得多。

您需要确保您的测试和监控比您想要监控/测量的要轻得多。

关于java - 有和没有Executor的多线程之间的区别,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/9597331/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com