gpt4 book ai didi

c++ - 使用 Boost::Fiber 的多个共享工作池

转载 作者:行者123 更新时间:2023-11-30 04:59:47 29 4
gpt4 key购买 nike

我一直在研究 boost::fibers 作为处理我的一些数据处理和 IO 问题的方法。 shared_work 调度程序看起来特别有前途,因为它可以让我为每个数据处理源启动一个数据处理任务,然后让它们根据需要在几个线程中相互分配。

然而,这让我想到了问题的根源:看起来每个进程只能有一个 shared_work “池”。如果我想在 4 个线程之间共享处理数据中的一组 12 个纤程,同时另一组 12 个纤程正在将处理后的数据写入另一个 4 个线程共享的文件,我该怎么办。

类似于:

#include<string>
#include<iostream>
#include<vector>
#include<mutex>
#include<thread>
#include<random>
#include<map>
#include<sstream>
#include<boost/bind.hpp>
#include<boost/fiber/all.hpp>

typedef boost::fibers::fiber FiberType;
typedef std::unique_lock<boost::fibers::mutex> LockType;


static const int fiberIterationCount = 5000;
static const int fiberCount = 12;
static const int threadCount = 4;
static const int distLowerLimit = 50;
static const int distUpperLimit = 500;

static boost::fibers::mutex firstMutex{};
static boost::fibers::mutex secondMutex{};
static boost::fibers::condition_variable firstCondition{};
static boost::fibers::condition_variable secondCondition{};
static boost::fibers::barrier synchronize{2*threadCount};
static int typeOneFibersFinished{0};
static int typeTwoFibersFinished{0};

static std::mt19937 typeOneGenerators[fiberCount];
static std::mt19937 typeTwoGenerators[fiberCount];

static std::mutex typeMapMutex;//lock for writing unnecessary for reads
static std::map<std::thread::id, std::string> threadTypeMap;


//simple function to give a heavy cpu load of variable duration
unsigned long long findPrimeNumber(int n)
{
int count=0;
unsigned long long a = 2;
while(count<n)
{
bool isPrime = true;
for(unsigned long long b = 2; (b * b) <= a; ++b)
{
if((a % b) == 0)
{
isPrime = false;
break;
}
}
if(isPrime)
{
count++;
}
++a;
}
return (a - 1);
}

void fiberTypeOne(int fiberNumber)
{
std::cout<<"Starting Type One Fiber #"<<fiberNumber;
std::uniform_int_distribution<int> dist(distLowerLimit, distUpperLimit);
for(int i=0; i<fiberIterationCount; ++i)
{
//generate a randomish load on this fiber so that it does not take a regular time slice
int tempPrime = dist(typeOneGenerators[fiberNumber]);
unsigned long long temp = findPrimeNumber(tempPrime);
std::cout << "T1 fiber #"<<fiberNumber<<" running on "<<threadTypeMap[std::this_thread::get_id()]
<<"\n Generated: "<<tempPrime<<", "<<temp;
boost::this_fiber::yield();
}

{
LockType lock(firstMutex);
++typeOneFibersFinished;
}
firstCondition.notify_all();
}

void threadTypeOne(int threadNumber)
{
//make a shared work scheduler that associates its fibers with "fiber pool 0"
boost::fibers::use_scheduling_algorithm< multi_pool_scheduler<0> >();
std::cout<<"Starting Type One Thread #"<<threadNumber<<" With Thread ID: "<<std::this_thread::get_id();

{
std::unique_lock<std::mutex> lock{typeMapMutex};
std::ostringstream gen;
gen<<"Thread Type 1 - Number: "<<threadNumber<<" with id: "<<std::this_thread::get_id();
threadTypeMap[std::this_thread::get_id()] = gen.str();
}
if(threadNumber == 0)
{ //if we are thread zero, create the fibers then join them to take ourselves off the "fiber list"
std::cout<<"Spawning Type One Fibers";
for(int fiberNumber=0; fiberNumber<fiberCount; ++fiberNumber)
{//create the fibers and instantly detach them
FiberType(boost::bind(&fiberTypeOne, fiberNumber)).detach();
}
}
synchronize.wait();
std::cout<<"T1 Thread preparing to wait";
//now let the fibers do their thing
LockType lock(firstMutex);
firstCondition.wait(lock, [](){return (typeOneFibersFinished == fiberCount);});
}

void fiberTypeTwo(int fiberNumber)
{
std::cout<<"Starting Type Two Fiber #"<<fiberNumber;
std::uniform_int_distribution<int> dist(distLowerLimit, distUpperLimit);
for(int i=0; i<fiberIterationCount; ++i)
{
//generate a randomish load on this fiber so that it does not take a regular time slice
int tempPrime = dist(typeTwoGenerators[fiberNumber]);
unsigned long long temp = findPrimeNumber(tempPrime);
std::cout << "T2 fiber #"<<fiberNumber<<" running on "<<threadTypeMap[std::this_thread::get_id()]
<<"\n Generated: "<<tempPrime<<", "<<temp;
boost::this_fiber::yield();
}

{
LockType lock(secondMutex);
++typeTwoFibersFinished;
}
secondCondition.notify_all();
}

void threadTypeTwo(int threadNumber)
{
//make a shared work scheduler that associates its fibers with "fiber pool 1"
boost::fibers::use_scheduling_algorithm< multi_pool_scheduler<1> >();
std::cout<<"Starting Type Two Thread #"<<threadNumber<<" With Thread ID: "<<std::this_thread::get_id();
{
std::unique_lock<std::mutex> lock{typeMapMutex};
std::ostringstream gen;
gen<<"Thread Type 2 - Number: "<<threadNumber<<" with id: "<<std::this_thread::get_id();
threadTypeMap[std::this_thread::get_id()] = gen.str();
}
if(threadNumber == 0)
{ //if we are thread zero, create the fibers then join them to take ourselves off the "fiber list"
std::cout<<"Spawning Type Two Fibers";
for(int fiberNumber=0; fiberNumber<fiberCount; ++fiberNumber)
{//create the fibers and instantly detach them
FiberType(boost::bind(&fiberTypeTwo, fiberNumber)).detach();
}
}
synchronize.wait();
std::cout<<"T2 Thread preparing to wait";
//now let the fibers do their thing
LockType lock(secondMutex);
secondCondition.wait(lock, [](){return (typeTwoFibersFinished == fiberCount);});
}

int main(int argc, char* argv[])
{
std::cout<<"Initializing Random Number Generators";
for(unsigned i=0; i<fiberCount; ++i)
{
typeOneGenerators->seed(i*500U - 1U);
typeTwoGenerators->seed(i*1500U - 1U);
}

std::cout<<"Commencing Main Thread Startup Startup";
std::vector<std::thread> typeOneThreads;
std::vector<std::thread> typeTwoThreads;
for(int i=0; i<threadCount; ++i)
{
typeOneThreads.emplace_back(std::thread(boost::bind(&threadTypeOne, i)));
typeTwoThreads.emplace_back(std::thread(boost::bind(&threadTypeTwo, i)));
}
//now let the threads do their thing and wait for them to finish with join
for(unsigned i=0; i<threadCount; ++i)
{
typeOneThreads[i].join();
}
for(unsigned i=0; i<threadCount; ++i)
{
typeTwoThreads[i].join();
}
std::cout<<"Shutting Down";
return 0;
}

如果不编写您自己的光纤调度器,这是否可行?如果是,怎么办?

最佳答案

我确定我确实需要编写自己的调度程序。但是,实际工作量很小。 boost::fibers::shared_work调度程序使用单个静态队列管理线程之间共享的纤程列表,由静态互斥体保护。还有另一个队列管理每个线程的主纤程(因为每个线程都有自己的调度程序),但它是类实例的本地队列,而不是像静态成员那样在类的所有实例之间共享。

然后,为了防止静态队列和锁在不同的线程集之间共享,解决方案是在类前面放置一个几乎无用的模板参数。然后每个线程将不同的参数传递给这个模板。以这种方式,由于您为模板的每个特化获得不同的对象,因此您为每个具有不同池编号的实例化获得不同的静态变量集。

下面是我对这个解决方案的实现,(主要是 boost::fiber::shared_work 的拷贝,其中包含一些更明确命名的变量和类型,并添加了模板参数)。

#include <condition_variable>
#include <chrono>
#include <deque>
#include <mutex>
#include <boost/config.hpp>
#include <boost/fiber/algo/algorithm.hpp>
#include <boost/fiber/context.hpp>
#include <boost/fiber/detail/config.hpp>
#include <boost/fiber/scheduler.hpp>
#include <boost/assert.hpp>
#include "boost/fiber/type.hpp"

#ifdef BOOST_HAS_ABI_HEADERS
# include BOOST_ABI_PREFIX
#endif

#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4251)
#endif

/*!
* @class SharedWorkPool
* @brief A scheduler for boost::fibers that operates in a manner similar to the
* shared work scheduler, except that it takes a template parameter determining
* which pool to draw fibers from. In this fashion, one group of threads can share
* a pool of fibers among themselves while another group of threads can work with
* a completely separate pool
* @tparam PoolNumber The index of the pool number for this thread
*/
template <int PoolNumber>
class SharedWorkPool : public boost::fibers::algo::algorithm
{
typedef std::deque<boost::fibers::context * > ReadyQueueType;
typedef boost::fibers::scheduler::ready_queue_type LocalQueueType;
typedef std::unique_lock<std::mutex> LockType;

public:
SharedWorkPool() = default;
~SharedWorkPool() override {}

SharedWorkPool( bool suspend) : suspendable{suspend}{}

SharedWorkPool( SharedWorkPool const&) = delete;
SharedWorkPool( SharedWorkPool &&) = delete;

SharedWorkPool& operator=(const SharedWorkPool&) = delete;
SharedWorkPool& operator=(SharedWorkPool&&) = delete;

void awakened(boost::fibers::context* ctx) noexcept override;

boost::fibers::context* pick_next() noexcept override;

bool has_ready_fibers() const noexcept override
{
LockType lock{readyQueueMutex};
return ((!readyQueue.empty()) || (!localQueue.empty()));
}

void suspend_until(const std::chrono::steady_clock::time_point& timePoint) noexcept override;

void notify() noexcept override;

private:
static ReadyQueueType readyQueue;
static std::mutex readyQueueMutex;

LocalQueueType localQueue{};
std::mutex instanceMutex{};
std::condition_variable suspendCondition{};
bool waitNotifyFlag{false};
bool suspendable{false};

};

template <int PoolNumber>
void SharedWorkPool<PoolNumber>::awakened(boost::fibers::context* ctx) noexcept
{
if(ctx->is_context(boost::fibers::type::pinned_context))
{ // we have been passed the thread's main fiber, never put those in the shared queue
localQueue.push_back(*ctx);
}
else
{//worker fiber, enqueue on shared queue
ctx->detach();
LockType lock{readyQueueMutex};
readyQueue.push_back(ctx);
}
}


template <int PoolNumber>
boost::fibers::context* SharedWorkPool<PoolNumber>::pick_next() noexcept
{
boost::fibers::context * ctx = nullptr;
LockType lock{readyQueueMutex};
if(!readyQueue.empty())
{ //pop an item from the ready queue
ctx = readyQueue.front();
readyQueue.pop_front();
lock.unlock();
BOOST_ASSERT( ctx != nullptr);
boost::fibers::context::active()->attach( ctx); //attach context to current scheduler via the active fiber of this thread
}
else
{
lock.unlock();
if(!localQueue.empty())
{ //nothing in the ready queue, return main or dispatcher fiber
ctx = & localQueue.front();
localQueue.pop_front();
}
}
return ctx;
}

template <int PoolNumber>
void SharedWorkPool<PoolNumber>::suspend_until(const std::chrono::steady_clock::time_point& timePoint) noexcept
{
if(suspendable)
{
if (std::chrono::steady_clock::time_point::max() == timePoint)
{
LockType lock{instanceMutex};
suspendCondition.wait(lock, [this](){return waitNotifyFlag;});
waitNotifyFlag = false;
}
else
{
LockType lock{instanceMutex};
suspendCondition.wait_until(lock, timePoint, [this](){return waitNotifyFlag;});
waitNotifyFlag = false;
}
}
}

template <int PoolNumber>
void SharedWorkPool<PoolNumber>::notify() noexcept
{
if(suspendable)
{
LockType lock{instanceMutex};
waitNotifyFlag = true;
lock.unlock();
suspendCondition.notify_all();
}
}

template <int PoolNumber>
std::deque<boost::fibers::context*> SharedWorkPool<PoolNumber>::readyQueue{};

template <int PoolNumber>
std::mutex SharedWorkPool<PoolNumber>::readyQueueMutex{};

请注意,如果您尝试在不同编译单元的声明中使用相同的池编号,我不完全确定会发生什么。但是,在正常情况下,即你只写了 boost::fibers::use_scheduling_algorithm< Threads::Fibers::SharedWorkPool<WorkPoolNumber> >();每个 WorkPoolNumber 在一个位置,它完美地工作。分配给一组给定线程的纤程始终在同一组线程中运行,绝不会由不同的线程组运行。

关于c++ - 使用 Boost::Fiber 的多个共享工作池,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51051481/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com