gpt4 book ai didi

c++ - CUDA/CUBLAS 矩阵 vector 乘法

转载 作者:行者123 更新时间:2023-11-30 04:15:09 25 4
gpt4 key购买 nike

我之前发布了一个关于 CUDA 中的矩阵向​​量乘法和编写我自己的内核的问题。这样做之后,我决定按照一些用户的建议(感谢@Robert Crovella)在 SO 上使用 CUBLAS 来实现我的问题,以期获得更高的性能(我的项目是性能驱动的)。

澄清一下:我想将 NxN 矩阵与 1xN vector 相乘。

几天来我一直在查看下面粘贴的代码,但我无法弄清楚为什么乘法给出了不正确的结果。我担心我使用 < vector > 数组会导致问题(这是使用这些数据类型的更大系统的一部分)。我并不是要将此线程用作调试工具,但我认为这对尝试实现此目的的其他用户也有帮助,因为我在互联网上没有遇到针对我的特定问题(以及 cublas)的特别全面的资源v2 API)。提前致谢!

#include <cuda.h>
#include <vector>
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <stdlib.h>
#include <cmath>
#include <cublas_v2.h>
#include <time.h>

//#include "timenow.cu"

// error check macros
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)

// for CUBLAS V2 API
#define cublasCheckErrors(fn) \
do { \
cublasStatus_t __err = fn; \
if (__err != CUBLAS_STATUS_SUCCESS) { \
fprintf(stderr, "Fatal cublas error: %d (at %s:%d)\n", \
(int)(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)

// random data filler
void fillvector(float *data, int N){
for(int i=0; i<N; i++){
data[i] = float(rand() % 10);
}
}

//printer
void printer(bool printOut, float *data, int N){
if(printOut == true){
for(int i=0; i<N; i++){
printf("%2.1f ", data[i]);
}
printf("\n");
}
}

/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////

int main(){

bool printOut = true;

int N;
std::cout << "Enter N: " ;
std::cin >> N;

std::vector<float> x0;
x0.resize(N);

std::vector<float> p;
p.resize(N*N);

// matrix A
std::vector<float> A[N];
for(int i=0;i<N;i++){
A[i].resize(N);
fillvector(A[i].data(), N);
printer(printOut, A[i].data(), N);
}
printf("\n");
fillvector(x0.data(), N);
printer(printOut, x0.data(), N);

printf("\nStarting CUDA computation...");
///double startTime = timenow();

// device pointers
float *d_A, *d_p, *d_b, *d_x0, *d_v, *d_temp;

cudaMalloc((void**)&d_A, N*N*sizeof(float));
cudaMalloc((void**)&d_temp, N*sizeof(float));
cudaMalloc((void**)&d_x0, N*sizeof(float));
cudaCheckErrors("cuda malloc fail");

// might need to flatten A...
cublasSetVector(N, sizeof(float), &x0, 1, d_x0, 1);
//daMemcpy(d_x0, &x0, N*sizeof(float), cudaMemcpyHostToDevice);
cublasSetMatrix(N, N, sizeof(float), &A, N, d_A, N);
cudaCheckErrors("cuda memcpy of A or x0 fail");

float *temp;
temp = (float *)malloc(N*sizeof(temp));

cublasHandle_t handle;
cublasCheckErrors(cublasCreate(&handle));

float alpha = 1.0f;
float beta = 0.0f;
cublasCheckErrors(cublasSgemv(handle, CUBLAS_OP_N, N, N, &alpha, d_A, N, d_x0, 1, &beta, d_temp, 1));

cublasGetVector(N, sizeof(float), &temp, 1, d_temp, 1);
//cudaMemcpy(temp, d_temp, N*sizeof(float), cudaMemcpyDeviceToHost);
cudaCheckErrors("returning to host failed");

printf("\n");
printer(printOut, temp, N);

/*alpha = -1.0;
cublasSaxpy(handle, N, &alpha, d_temp, 1, d_v, 1);
cublasGetVector(N, sizeof(float) * N, d_v, 1, &v, 1);
printf("\n");
for(int i=0; i<N; i++){
printf("%2.1f ",v[i]);
}*/

printf("\nFinished CUDA computations...");
//double endTime = timenow();

//double timeDiff = endTime - startTime;
//printf("\nRuntime: %2.3f seconds \n", timeDiff);

cudaFree(d_temp);
cudaFree(d_A);
cudaFree(d_p);
cudaFree(d_x0);

return 0;
}

最佳答案

  • 我们不以这种方式引用 vector 的第一个元素:

    cublasSetVector(N, sizeof(float), &x0, 1, d_x0,   

相反,你应该这样做:

cublasSetVector(N, sizeof(float), &(x0[0]), 1, d_x0, 1);

对于引用 ASetMatrix 调用也是如此:

cublasSetMatrix(N, N, sizeof(float), &(A[0]), N, d_A, N);
  • 您的 GetVector 调用有 2 个错误:

    cublasGetVector(N, sizeof(float), &temp, 1, d_temp, 1);

您有tempd_temp 参数reversed (您正在从设备复制到主机)并且您不应该获取 temp 的地址:它已经是一个指针。所以这样做:

cublasGetVector(N, sizeof(float), d_temp, 1, temp, 1);
  • 您没有对所有 cublas 调用(例如获取/设置矩阵/vector 调用)进行正确的错误检查。也可以使用您在其他 cublas 调用中使用的相同方法。

  • 您正在将 A 创建为 vector 数组。这不适用于 cublasSetMatrix。相反,我们需要将 A 创建为平面 vector ,其大小足以 (N*N) 来存储整个矩阵。

  • 最后,cublas 期望它使用的矩阵按列优先顺序存储。如果以行优先顺序传递 C 样式数组,则应在 cublasSgemv 中使用该矩阵的转置:

    cublasCheckErrors(cublasSgemv(handle, CUBLAS_OP_T, N, N, &alpha, d_A, N, d_x0, 1, &beta, d_temp, 1));

以下代码修复了这些不同的问题:

$ cat t235.cu
#include <cuda.h>
#include <vector>
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <stdlib.h>
#include <cmath>
#include <cublas_v2.h>
#include <time.h>

//#include "timenow.cu"

// error check macros
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)

// for CUBLAS V2 API
#define cublasCheckErrors(fn) \
do { \
cublasStatus_t __err = fn; \
if (__err != CUBLAS_STATUS_SUCCESS) { \
fprintf(stderr, "Fatal cublas error: %d (at %s:%d)\n", \
(int)(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)

// random data filler
void fillvector(float *data, int N){
for(int i=0; i<N; i++){
data[i] = float(rand() % 10);
}
}

//printer
void printer(bool printOut, float *data, int N){
if(printOut == true){
for(int i=0; i<N; i++){
printf("%2.1f ", data[i]);
}
printf("\n");
}
}

/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////

int main(){

bool printOut = true;

int N;
std::cout << "Enter N: " ;
std::cin >> N;

std::vector<float> x0;
x0.resize(N);

std::vector<float> p;
p.resize(N*N);

// matrix A
std::vector<float> A(N*N);
fillvector(A.data(), N*N);
for (int i=0; i< N; i++){
printer(printOut, &(A[(i*N)]), N);
printf("\n");}
fillvector(x0.data(), N);
printer(printOut, x0.data(), N);

printf("\nStarting CUDA computation...");
///double startTime = timenow();

// device pointers
float *d_A, *d_x0, *d_temp;

cudaMalloc((void**)&d_A, N*N*sizeof(float));
cudaMalloc((void**)&d_temp, N*sizeof(float));
cudaMalloc((void**)&d_x0, N*sizeof(float));
cudaCheckErrors("cuda malloc fail");

// might need to flatten A...
cublasCheckErrors(cublasSetVector(N, sizeof(float), &(x0[0]), 1, d_x0, 1));
//daMemcpy(d_x0, &x0, N*sizeof(float), cudaMemcpyHostToDevice);
cublasCheckErrors(cublasSetMatrix(N, N, sizeof(float), &(A[0]), N, d_A, N));
//cudaCheckErrors("cuda memcpy of A or x0 fail");

float *temp;
temp = (float *)malloc(N*sizeof(temp));

cublasHandle_t handle;
cublasCheckErrors(cublasCreate(&handle));

float alpha = 1.0f;
float beta = 0.0f;
cublasCheckErrors(cublasSgemv(handle, CUBLAS_OP_T, N, N, &alpha, d_A, N, d_x0, 1, &beta, d_temp, 1));

cublasCheckErrors(cublasGetVector(N, sizeof(float), d_temp, 1, temp, 1));
//cudaMemcpy(temp, d_temp, N*sizeof(float), cudaMemcpyDeviceToHost);
//cudaCheckErrors("returning to host failed");

printf("\n");
printer(printOut, temp, N);

/*alpha = -1.0;
cublasSaxpy(handle, N, &alpha, d_temp, 1, d_v, 1);
cublasGetVector(N, sizeof(float) * N, d_v, 1, &v, 1);
printf("\n");
for(int i=0; i<N; i++){
printf("%2.1f ",v[i]);
}*/

printf("\nFinished CUDA computations...\n");
//double endTime = timenow();

//double timeDiff = endTime - startTime;
//printf("\nRuntime: %2.3f seconds \n", timeDiff);

cudaFree(d_temp);
cudaFree(d_A);
//cudaFree(d_p);
cudaFree(d_x0);

return 0;
}
$ nvcc -arch=sm_20 -O3 -o t235 t235.cu -lcublas
$ ./t235
Enter N: 5
3.0 6.0 7.0 5.0 3.0

5.0 6.0 2.0 9.0 1.0

2.0 7.0 0.0 9.0 3.0

6.0 0.0 6.0 2.0 6.0

1.0 8.0 7.0 9.0 2.0

0.0 2.0 3.0 7.0 5.0

Starting CUDA computation...
83.0 86.0 92.0 62.0 110.0

Finished CUDA computations...
$

关于c++ - CUDA/CUBLAS 矩阵 vector 乘法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18516373/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com