gpt4 book ai didi

c++ - 为什么我的信号槽比 QThreadPool+new+delete 慢?

转载 作者:行者123 更新时间:2023-11-30 03:54:45 25 4
gpt4 key购买 nike

我在阅读 Qt 的信号与槽 [1] 时注意到它声称信号和槽的开销比任何新操作或删除操作都要低得多。所以我做了一个测试:

#include <cmath>

#include <QtCore/QAtomicInt>
#include <QtCore/QCoreApplication>
#include <QtCore/QElapsedTimer>
#include <QtCore/QMetaObject>
#include <QtCore/QMetaMethod>
#include <QtCore/QObject>
#include <QtCore/QRunnable>
#include <QtCore/QTextStream>
#include <QtCore/QThread>
#include <QtCore/QThreadPool>
#include <QtCore/QTimer>
#include <QtCore/QVector>

using std::pow;

constexpr int const maxThreadCount(16);
constexpr int const maxIteration(100000);
constexpr int const maxPiDigit(1000);

void calcPi()
{
double sum(0);
for (int k(0); k < maxPiDigit; ++k) {
double a(4.0 / (k * 8 + 1));
double b(2.0 / (k * 8 + 4));
double c(1.0 / (k * 8 + 5));
double d(1.0 / (k * 8 + 6));
sum += pow(16, -k) * (a - b - c -d);
}
QTextStream out(stdout);
out << sum << endl;
}

class CalcPiWithQObject : public QObject
{
Q_OBJECT

public:
CalcPiWithQObject(QObject *parent = NULL);

public slots:
void start();

signals:
void finished();
}; // CalcPiWithQObject

CalcPiWithQObject::CalcPiWithQObject(QObject *parent):
QObject(parent)
{}

void CalcPiWithQObject::start()
{
calcPi();
finished();
}

class CalcPiWithQRunnable : public QRunnable
{
private:
static QAtomicInt count_;

public:
CalcPiWithQRunnable(QThreadPool *parent);

void run() override;

private:
QThreadPool *parent_;
}; // CalcPiWithQRunnable

QAtomicInt CalcPiWithQRunnable::count_(maxThreadCount);

CalcPiWithQRunnable::CalcPiWithQRunnable(QThreadPool *parent):
QRunnable(),
parent_(parent)
{
setAutoDelete(false);
}

void CalcPiWithQRunnable::run()
{
calcPi();
if (count_.fetchAndAddOrdered(1) < maxIteration) {
parent_->start(new CalcPiWithQRunnable(parent_));
}
delete this;
}

class PiTest : public QObject
{
Q_OBJECT

public:
PiTest(QObject *parent = NULL);

public slots:
void start();
void nextQObjectCall();

private:
QVector<QThread *> threads_;
QVector<CalcPiWithQObject *> calc_;
QThreadPool *threadPool_;
QElapsedTimer timer_;
int threadCount_;
int jobCount_;
}; // PiTest

PiTest::PiTest(QObject *parent):
QObject(parent),
threads_(maxThreadCount),
calc_(maxThreadCount),
threadPool_(new QThreadPool(this)),
threadCount_(maxThreadCount),
jobCount_(maxThreadCount)
{
threadPool_->setMaxThreadCount(maxThreadCount);
for (int i(0); i < maxThreadCount; ++i) {
threads_[i] = new QThread();
calc_[i] = new CalcPiWithQObject();
calc_[i]->moveToThread(threads_[i]);
QObject::connect(calc_[i], &CalcPiWithQObject::finished,
this, &PiTest::nextQObjectCall,
Qt::QueuedConnection);
QObject::connect(threads_[i], &QThread::started,
calc_[i], &CalcPiWithQObject::start,
Qt::QueuedConnection);
}
}

void PiTest::start()
{
timer_.start();
for (int i(0); i < maxThreadCount; ++i) {
threadPool_->start(new CalcPiWithQRunnable(threadPool_));
}
threadPool_->waitForDone();
int timePassed(timer_.elapsed());
QTextStream out(stdout);
out << "QThreadPool: " << timePassed << endl;
timer_.restart();
for (int i(0); i < maxThreadCount; ++i) {
threads_[i]->start();
}
}

static QMetaMethod nextCall(PiTest::staticMetaObject.method(PiTest::staticMetaObject.indexOfMethod("start")));

void PiTest::nextQObjectCall()
{
jobCount_++;
if (jobCount_ < maxIteration) {
nextCall.invoke(sender(), Qt::QueuedConnection);
QMetaObject::invokeMethod(sender(), "start",
Qt::QueuedConnection);
return;
}
threadCount_--;
if (threadCount_ == 0) {
for (int i(0); i < maxThreadCount; ++i) {
threads_[i]->quit();
}
int timePassed(timer_.elapsed());
QTextStream out(stdout);
out << "QThread: " << timePassed << endl;
qApp->quit();
}
}

int main(int argc, char *argv[])
{
QCoreApplication app(argc, argv);
PiTest *bench(new PiTest(qApp));
QTimer::singleShot(0, bench, SLOT(start()));
return qApp->exec();
}

#include "main_moc.cpp"

我在闲置的 20 核计算机上运行了测试:

/usr/lib64/qt5/bin/moc -o main_moc.cpp main.cpp
clang++ -std=c++11 -fPIE -O2 -march=native -I/usr/include/qt5/ -L/usr/lib64/qt5 -lQt5Core -o bench main.cpp
./bench > test.out
grep QThread test.out

结果如下:

QThreadPool: 4803
QThread: 9285

我尝试了不同的参数,使用更长的圆周率计算和更少的作业,反之亦然,但结果大致相同。 QThread+signal/slots 总是落后。对于更大数量的作业,QThreadPool+new/delete 可以轻松胜过 QThread 高达 10 倍。

我对我的基准代码感到有些尴尬。我在这里误解了什么吗?如果信号/槽比新建/删除快,我的基准测试有什么问题?

谢谢。

[1] http://doc.qt.io/qt-5/signalsandslots.html

最佳答案

信号性能因连接类型而异。当你创建线程间连接时,连接是排队的,并使用事件循环来调度自己,而Qt中的事件循环不仅相当慢,而且上次我检查它没有提供任何方法来增加它的更新速度。

这使得跨线程的信号非常慢,我遇到过细粒度并发的情况,多线程导致性能下降而不是性能提升。

只是为了让您了解直接连接和排队连接之间的区别:

#define COUNT 5000
class Ping : public QObject {
Q_OBJECT
Q_SIGNAL void pong(uint);
public slots: void ping(uint c) { if (c < COUNT) emit pong(++c); else qDebug() << t.nsecsElapsed(); }
};

//...

QObject::connect(&p1, SIGNAL(pong(uint)), &p2, SLOT(ping(uint)), Qt::DirectConnection);
QObject::connect(&p2, SIGNAL(pong(uint)), &p1, SLOT(ping(uint)), Qt::DirectConnection);

//...

p1.ping(0);

结果:

Direct connection (in same thread)    - 570504 nsec
Queued connection (in same thread) - 29670333 nsec
Queued connection (different threads) - 53343054 nsec

如您所见,线程间连接几乎比直接连接慢 100 倍。而且我怀疑您链接到的文档是指直接连接。

总而言之,我认为您的测试一团糟。你真的应该精简它,让它变得简单,并专注于你提出的问题。

最后,直接连接可能比新建/删除更快,但排队连接肯定不是,它们要慢得多,这绝对是不同性能背后的关键因素。您链接到的文档中的声明与 QThread + worker vs QRunnable + thread pool 性能绝对无关。最后,在两种情况下,您使用两种动态内存分配/取消分配和排队连接。

关于c++ - 为什么我的信号槽比 QThreadPool+new+delete 慢?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29357255/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com