- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我使用 CUDA 开发了枕形失真以支持实时 - 对于 3680*2456 图像序列超过 40 fps。
但如果我使用 CUDA - nVIDIA GeForce GT 610、2GB DDR3,则需要 130 毫秒。
但如果我使用 CPU 和 OpenMP - Core i7 3.4GHz,QuadCore,它只需要 60 毫秒。
请告诉我怎样做才能加快速度。谢谢。
完整的源代码可以在这里下载。 https://drive.google.com/file/d/0B9SEJgsu0G6QX2FpMnRja0o5STA/view?usp=sharing https://drive.google.com/file/d/0B9SEJgsu0G6QOGNPMmVQLWpSb2c/view?usp=sharing
代码如下。
__global__
void undistort(int N, float k, int width, int height, int depth, int pitch, float R, float L, unsigned char* in_bits, unsigned char* out_bits)
{
// Get the Index of the Array from GPU Grid/Block/Thread Index and Dimension.
int i, j;
i = blockIdx.y * blockDim.y + threadIdx.y;
j = blockIdx.x * blockDim.x + threadIdx.x;
// If Out of Array
if (i >= height || j >= width)
{
return;
}
// Calculating Undistortion Equation.
// In CPU, We used Fast Approximation equations of atan and sqrt - It makes 2 times faster.
// But In GPU, No need to use Approximation Functions as it is faster.
int cx = width * 0.5;
int cy = height * 0.5;
int xt = j - cx;
int yt = i - cy;
float distance = sqrt((float)(xt*xt + yt*yt));
float r = distance*k / R;
float theta = 1;
if (r == 0)
theta = 1;
else
theta = atan(r)/r;
theta = theta*L;
float tx = theta*xt + cx;
float ty = theta*yt + cy;
// When we correct the frame, its size will be greater than Original.
// So We should Crop it.
if (tx < 0)
tx = 0;
if (tx >= width)
tx = width - 1;
if (ty < 0)
ty = 0;
if (ty >= height)
ty = height - 1;
// Output the Result.
int ux = (int)(tx);
int uy = (int)(ty);
tx = tx - ux;
ty = ty - uy;
unsigned char *p = (unsigned char*)out_bits + i*pitch + j*depth;
unsigned char *q00 = (unsigned char*)in_bits + uy*pitch + ux*depth;
unsigned char *q01 = q00 + depth;
unsigned char *q10 = q00 + pitch;
unsigned char *q11 = q10 + depth;
unsigned char newVal[4] = {0};
for (int k = 0; k < depth; k++)
{
newVal[k] = (q00[k]*(1-tx)*(1-ty) + q01[k]*tx*(1-ty) + q10[k]*(1-tx)*ty + q11[k]*tx*ty);
memcpy(p + k, &newVal[k], 1);
}
}
void wideframe_correction(char* bits, int width, int height, int depth)
{
// Find the device.
// Initialize the nVIDIA Device.
cudaSetDevice(0);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, 0);
// This works for Calculating GPU Time.
cudaProfilerStart();
// This works for Measuring Total Time
long int dwTime = clock();
// Setting Distortion Parameters
// Note that Multiplying 0.5 works faster than divide into 2.
int cx = (int)(width * 0.5);
int cy = (int)(height * 0.5);
float k = -0.73f;
float R = sqrt((float)(cx*cx + cy*cy));
// Set the Radius of the Result.
float L = (float)(width<height ? width:height);
L = L/2.0f;
L = L/R;
L = L*L*L*0.3333f;
L = 1.0f/(1-L);
// Create the GPU Memory Pointers.
unsigned char* d_img_in = NULL;
unsigned char* d_img_out = NULL;
// Allocate the GPU Memory2D with pitch for fast performance.
size_t pitch;
cudaMallocPitch( (void**) &d_img_in, &pitch, width*depth, height );
cudaMallocPitch( (void**) &d_img_out, &pitch, width*depth, height );
_tprintf(_T("\nPitch : %d\n"), pitch);
// Copy RAM data to VRAM.
cudaMemcpy2D( d_img_in, pitch,
bits, width*depth, width*depth, height,
cudaMemcpyHostToDevice );
cudaMemcpy2D( d_img_out, pitch,
bits, width*depth, width*depth, height,
cudaMemcpyHostToDevice );
// Create Variables for Timing
cudaEvent_t startEvent, stopEvent;
cudaError_t err = cudaEventCreate(&startEvent, 0);
assert( err == cudaSuccess );
err = cudaEventCreate(&stopEvent, 0);
assert( err == cudaSuccess );
// Execution of the version using global memory
float elapsedTime;
cudaEventRecord(startEvent);
// Process image
dim3 dGrid(width / BLOCK_WIDTH + 1, height / BLOCK_HEIGHT + 1);
dim3 dBlock(BLOCK_WIDTH, BLOCK_HEIGHT);
undistort<<< dGrid, dBlock >>> (width*height, k, width, height, depth, pitch, R, L, d_img_in, d_img_out);
cudaThreadSynchronize();
cudaEventRecord(stopEvent);
cudaEventSynchronize( stopEvent );
// Estimate the GPU Time.
cudaEventElapsedTime( &elapsedTime, startEvent, stopEvent);
// Calculate the Total Time.
dwTime = clock() - dwTime;
// Save Image data from VRAM to RAM
cudaMemcpy2D( bits, width*depth,
d_img_out, pitch, width*depth, height,
cudaMemcpyDeviceToHost );
_tprintf(_T("GPU Processing Time(ms) : %d\n"), (int)elapsedTime);
_tprintf(_T("VRAM Memory Read/Write Time(ms) : %d\n"), dwTime - (int)elapsedTime);
_tprintf(_T("Total Time(ms) : %d\n"), dwTime );
// Free GPU Memory
cudaFree(d_img_in);
cudaFree(d_img_out);
cudaProfilerStop();
cudaDeviceReset();
}
最佳答案
我没看过源码,但是有些东西你是过不去的。
您的 GPU 的性能几乎与 CPU 相同:
根据您的真实 GPU/CPU 型号调整以下信息。
Specification | GPU | CPU
----------------------------------------
Bandwith | 14,4 GB/sec | 25.6 GB/s
Flops | 155 (FMA) | 135
我们可以得出结论,对于内存受限的内核,您的 GPU 永远不会比 CPU 快。
在此处找到的 GPU 信息: http://www.nvidia.fr/object/geforce-gt-610-fr.html#pdpContent=2
在此处找到的 CPU 信息:http://ark.intel.com/products/75123/Intel-Core-i7-4770K-Processor-8M-Cache-up-to-3_90-GHz?q=Intel%20Core%20i7%204770K
这里http://www.ocaholic.ch/modules/smartsection/item.php?page=6&itemid=1005
关于c++ - CUDA优化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35006924/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!