gpt4 book ai didi

c++ - C++ 中的任意长度 FFT

转载 作者:行者123 更新时间:2023-11-30 02:22:48 30 4
gpt4 key购买 nike

我正在尝试从此网页运行 C++ FFT 代码: https://www.nayuki.io/page/free-small-fft-in-multiple-languages

刚接触 C++,所以不知道如何运行它。本质上,我想将一个 REAL vector 和一个 IMAG vector 传递给程序并生成 REAL 和 IMAG vector 的输出。

说我的 REAL_VEC = {1, 2, 3, 4, 5}

假设我的 IMAG_VEC = {0, 1, 0, 1, 0}

正在粘贴我拥有的代码及其编译。但是在哪里提供输入以及如何获得输出(对于上述 vector )?


//FftRealPairTest.cpp
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <random>
#include <vector>
#include "FftRealPair.hpp"

using std::cout;
using std::endl;
using std::vector;


// Private function prototypes
static void testFft(int n);

static vector<double> randomReals(int n);

// Mutable global variable
static double maxLogError = -INFINITY;

// Random number generation
std::default_random_engine randGen((std::random_device())());


int main() {
// Test diverse size FFTs
for (int i = 0, prev = 0; i <= 4; i++) {
int n = static_cast<int>(std::lround(std::pow(1500.0, i / 100.0)));
if (n > prev) {
testFft(n);
prev = n;

}

}

cout << endl;
cout << "Max log err = " << std::setprecision(3) << maxLogError << endl;
cout << "Test " << (maxLogError < -10 ? "passed" : "failed") << endl;
return EXIT_SUCCESS;
}


static void testFft(int n) {
vector<double> inputreal(randomReals(n));
vector<double> inputimag(randomReals(n));

vector<double> actualoutreal(inputreal);
vector<double> actualoutimag(inputimag);
Fft::transform(actualoutreal, actualoutimag);
}


static vector<double> randomReals(int n) {
std::uniform_real_distribution<double> valueDist(-1.0, 1.0);
vector<double> result;
for (int i = 0; i < n; i++)
result.push_back(valueDist(randGen));
return result;
}

/////////////////

//FftRealPair.cpp
/*
* Free FFT and convolution (C++)
*
* Copyright (c) 2017 Project Nayuki. (MIT License)
* https://www.nayuki.io/page/free-small-fft-in-multiple-languages
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
* - The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* - The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the Software or the use or other dealings in the
* Software.
*/

#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include "FftRealPair.hpp"

using std::size_t;
using std::vector;


// Private function prototypes
static size_t reverseBits(size_t x, int n);


void Fft::transform(vector<double> &real, vector<double> &imag) {
size_t n = real.size();
if (n != imag.size())
throw "Mismatched lengths";
if (n == 0)
return;
else if ((n & (n - 1)) == 0) // Is power of 2
transformRadix2(real, imag);
else // More complicated algorithm for arbitrary sizes
transformBluestein(real, imag);
}


void Fft::inverseTransform(vector<double> &real, vector<double> &imag) {
transform(imag, real);
}


void Fft::transformRadix2(vector<double> &real, vector<double> &imag) {
// Length variables
size_t n = real.size();
if (n != imag.size())
throw "Mismatched lengths";
int levels = 0; // Compute levels = floor(log2(n))
for (size_t temp = n; temp > 1U; temp >>= 1)
levels++;
if (static_cast<size_t>(1U) << levels != n)
throw "Length is not a power of 2";

// Trignometric tables
vector<double> cosTable(n / 2);
vector<double> sinTable(n / 2);
for (size_t i = 0; i < n / 2; i++) {
cosTable[i] = std::cos(2 * M_PI * i / n);
sinTable[i] = std::sin(2 * M_PI * i / n);
}

// Bit-reversed addressing permutation
for (size_t i = 0; i < n; i++) {
size_t j = reverseBits(i, levels);
if (j > i) {
std::swap(real[i], real[j]);
std::swap(imag[i], imag[j]);
}
}

// Cooley-Tukey decimation-in-time radix-2 FFT
for (size_t size = 2; size <= n; size *= 2) {
size_t halfsize = size / 2;
size_t tablestep = n / size;
for (size_t i = 0; i < n; i += size) {
for (size_t j = i, k = 0; j < i + halfsize; j++, k += tablestep) {
size_t l = j + halfsize;
double tpre = real[l] * cosTable[k] + imag[l] * sinTable[k];
double tpim = -real[l] * sinTable[k] + imag[l] * cosTable[k];
real[l] = real[j] - tpre;
imag[l] = imag[j] - tpim;
real[j] += tpre;
imag[j] += tpim;
}
}
if (size == n) // Prevent overflow in 'size *= 2'
break;
}
}


void Fft::transformBluestein(vector<double> &real, vector<double> &imag) {
// Find a power-of-2 convolution length m such that m >= n * 2 + 1
size_t n = real.size();
if (n != imag.size())
throw "Mismatched lengths";
size_t m = 1;
while (m / 2 <= n) {
if (m > SIZE_MAX / 2)
throw "Vector too large";
m *= 2;
}

// Trignometric tables
vector<double> cosTable(n), sinTable(n);
for (size_t i = 0; i < n; i++) {
unsigned long long temp = static_cast<unsigned long long>(i) * i;
temp %= static_cast<unsigned long long>(n) * 2;
double angle = M_PI * temp / n;
// Less accurate alternative if long long is unavailable: double angle = M_PI * i * i / n;
cosTable[i] = std::cos(angle);
sinTable[i] = std::sin(angle);
}

// Temporary vectors and preprocessing
vector<double> areal(m), aimag(m);
for (size_t i = 0; i < n; i++) {
areal[i] = real[i] * cosTable[i] + imag[i] * sinTable[i];
aimag[i] = -real[i] * sinTable[i] + imag[i] * cosTable[i];
}
vector<double> breal(m), bimag(m);
breal[0] = cosTable[0];
bimag[0] = sinTable[0];
for (size_t i = 1; i < n; i++) {
breal[i] = breal[m - i] = cosTable[i];
bimag[i] = bimag[m - i] = sinTable[i];
}

// Convolution
vector<double> creal(m), cimag(m);
convolve(areal, aimag, breal, bimag, creal, cimag);

// Postprocessing
for (size_t i = 0; i < n; i++) {
real[i] = creal[i] * cosTable[i] + cimag[i] * sinTable[i];
imag[i] = -creal[i] * sinTable[i] + cimag[i] * cosTable[i];
}
}


void Fft::convolve(const vector<double> &x, const vector<double> &y, vector<double> &out) {
size_t n = x.size();
if (n != y.size() || n != out.size())
throw "Mismatched lengths";
vector<double> outimag(n);
convolve(x, vector<double>(n), y, vector<double>(n), out, outimag);
}


void Fft::convolve(
const vector<double> &xreal, const vector<double> &ximag,
const vector<double> &yreal, const vector<double> &yimag,
vector<double> &outreal, vector<double> &outimag) {

size_t n = xreal.size();
if (n != ximag.size() || n != yreal.size() || n != yimag.size()
|| n != outreal.size() || n != outimag.size())
throw "Mismatched lengths";

vector<double> xr(xreal);
vector<double> xi(ximag);
vector<double> yr(yreal);
vector<double> yi(yimag);
transform(xr, xi);
transform(yr, yi);

for (size_t i = 0; i < n; i++) {
double temp = xr[i] * yr[i] - xi[i] * yi[i];
xi[i] = xi[i] * yr[i] + xr[i] * yi[i];
xr[i] = temp;
}
inverseTransform(xr, xi);

for (size_t i = 0; i < n; i++) { // Scaling (because this FFT implementation omits it)
outreal[i] = xr[i] / n;
outimag[i] = xi[i] / n;
}
}


static size_t reverseBits(size_t x, int n) {
size_t result = 0;
for (int i = 0; i < n; i++, x >>= 1)
result = (result << 1) | (x & 1U);
return result;
}



///////////



//FftRealPair.hpp
/*
* Free FFT and convolution (C++)
*
* Copyright (c) 2017 Project Nayuki. (MIT License)
* https://www.nayuki.io/page/free-small-fft-in-multiple-languages
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
* - The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* - The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the Software or the use or other dealings in the
* Software.
*/

#pragma once

#include <vector>


namespace Fft {

/*
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
* The vector can have any length. This is a wrapper function.
*/
void transform(std::vector<double> &real, std::vector<double> &imag);


/*
* Computes the inverse discrete Fourier transform (IDFT) of the given complex vector, storing the result back into the vector.
* The vector can have any length. This is a wrapper function. This transform does not perform scaling, so the inverse is not a true inverse.
*/
void inverseTransform(std::vector<double> &real, std::vector<double> &imag);





/*
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
* The vector's length must be a power of 2. Uses the Cooley-Tukey decimation-in-time radix-2 algorithm.
*/
void transformRadix2(std::vector<double> &real, std::vector<double> &imag);


/*
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
* The vector can have any length. This requires the convolution function, which in turn requires the radix-2 FFT function.
* Uses Bluestein's chirp z-transform algorithm.
*/
void transformBluestein(std::vector<double> &real, std::vector<double> &imag);


/*
* Computes the circular convolution of the given real vectors. Each vector's length must be the same.
*/
void convolve(const std::vector<double> &x, const std::vector<double> &y, std::vector<double> &out);


/*
* Computes the circular convolution of the given complex vectors. Each vector's length must be the same.
*/
void convolve(
const std::vector<double> &xreal, const std::vector<double> &ximag,
const std::vector<double> &yreal, const std::vector<double> &yimag,
std::vector<double> &outreal, std::vector<double> &outimag);
}

最佳答案

如果您查看 .hpp file您发布的第一个函数 transform() 接受两个输入:您的实 vector 和虚 vector 。 FFT 是“就地”完成的,因此结果以相同的 vector 返回。

如果你想试一试,你可以看看 testFft() 并初始化inputRealinputImag 与您的数据。然后将 vector 复制到 actualOutRealactualOutImag(以避免覆盖原始数据)并传递给 transform。

之后,您应该将输出放在相同的 vector 中(actualOutRealactualOutImag)。

关于c++ - C++ 中的任意长度 FFT,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46901897/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com