gpt4 book ai didi

c++ - Openmp:无法正确计算并行 for 循环内的作业状态

转载 作者:行者123 更新时间:2023-11-30 01:49:54 25 4
gpt4 key购买 nike

我正在尝试在并行 for 循环中实现任务状态报告功能。正在使用“OPENMP”执行 for 循环的这种并行化。

我希望像这样执行状态报告:

Work done 70%; estimated time left 3:30:05 hour.

当然,我可以通过计算“开始时间”和“当前时间”之间的差来计算“预计剩余时间”。但是,即使使用“静态”声明,我似乎也无法在 for 循环内准确计算“完成的工作”。

一些指导将不胜感激。

我的代码输出:

Values of cores : 8
Outer loop =================================
Thread 0 iCount0
% of work done 10
Outer loop =================================
Thread 0 iCount1
Outer loop =================================
Thread 2 iCount2
Outer loop =================================
Thread 7 iCount3
% of work done 40
Outer loop =================================
Thread 5 iCount4
% of work done 50
Outer loop =================================
Thread 3 iCount5
% of work done 60
Outer loop =================================
Thread 4 iCount6
% of work done 70
Outer loop =================================
Thread 1 iCount7
% of work done 20
% of work done 80
Outer loop =================================
Thread 6 iCount8
% of work done 90
Outer loop =================================
Thread 1 iCount9
% of work done 100
% of work done 30

正如您从最后两行输出中看到的,我无法正确计算作业的状态。

这是我的代码:

注意:我有意使用“std::endl”而不是“\n”,因为以某种方式刷新输出缓冲区会扰乱我的 work% 计算。我确信如果我在内部并行执行真正的计算,也会出现类似的情况

#include "stdafx.h"
#include <iostream> // std::cout, std::endl
#include <iomanip> // std::setfill, std::setw
#include <math.h> /* pow */
#include <omp.h>

int main(int argc, char** argv)
{
// Get the number of processors in this system
int iCPU = omp_get_num_procs();

// Now set the number of threads
omp_set_num_threads(iCPU);
std::cout << "Values of cores : " << iCPU <<" \n";

int x = 0;
int iTotalOuter = 10;
static int iCount = 0;

#pragma omp parallel for private(x)
for(int y = 0; y < iTotalOuter; y++)
{
std::cout << "Outer loop =================================\n" ;
std::cout <<"\nThread "<<omp_get_thread_num()<<" iCount" << iCount<<std::endl;

for(x = 0; x< 5; x++)
{
//std::cout << "Inner loop \n" ;
}
iCount = iCount + 1;
std::cout <<"\n % of work done " << (double)100*((double)iCount/(double)iTotalOuter)<<std::endl;
}

std::cin.ignore(); //Wait for user to hit enter
return 0;
}

更新:根据“Avi Ginsburg”的回答,我正在尝试这样做:

#include "stdafx.h"
#include <iostream> // std::cout, std::endl
#include <iomanip> // std::setfill, std::setw
#include <math.h> /* pow */
#include <omp.h>
void ReportJobStatus(int , int );

int main(int argc, char** argv)
{
// Get the number of processors in this system
int iCPU = omp_get_num_procs();

// Now set the number of threads
omp_set_num_threads(iCPU);
std::cout << "Values of cores : " << iCPU <<" \n";

int x = 0;
int iTotalOuter = 100;
static int iCount = 0;

#pragma omp parallel for private(x)
for(int y = 0; y < iTotalOuter; y++)
{
std::cout << "Outer loop =================================\n" ;

for(x = 0; x< 5; x++)
{
//std::cout << "Inner loop \n" ;
}
#pragma omp atomic
iCount++;

std::cout<< " omp_get_thread_num(): " << omp_get_thread_num() <<"\n";
if (omp_get_thread_num() == 0){
ReportJobStatus(iCount, iTotalOuter);
}

}

std::cin.ignore(); //Wait for user to hit enter
return 0;
}

问题(已更新):问题是同一线程正用于并发执行。因此,“工作完成”报告变得严重受限。如何根据数据将作业分配到不同的核心。

这是我的代码的当前输出:

Outer loop =================================
omp_get_thread_num(): 0

% of work done 1
Outer loop =================================
omp_get_thread_num(): 0

% of work done 2
Outer loop =================================
omp_get_thread_num(): 0

% of work done 3
Outer loop =================================
omp_get_thread_num(): 0

% of work done 4
Outer loop =================================
omp_get_thread_num(): 0

% of work done 5
Outer loop =================================
omp_get_thread_num(): 0

% of work done 6
Outer loop =================================
omp_get_thread_num(): 0

% of work done 7
Outer loop =================================
omp_get_thread_num(): 0

% of work done 8
Outer loop =================================
omp_get_thread_num(): 0

% of work done 9
Outer loop =================================
omp_get_thread_num(): 0

% of work done 10
Outer loop =================================
omp_get_thread_num(): 0

% of work done 11
Outer loop =================================
omp_get_thread_num(): 0

% of work done 12
Outer loop =================================
omp_get_thread_num(): 0

% of work done 13
Outer loop =================================
omp_get_thread_num(): 0

% of work done 14
Outer loop =================================
omp_get_thread_num(): 0

% of work done 15
Outer loop =================================
omp_get_thread_num(): 0

% of work done 16
Outer loop =================================
omp_get_thread_num(): 0

% of work done 17
Outer loop =================================
omp_get_thread_num(): 0

% of work done 18
Outer loop =================================
omp_get_thread_num(): 0
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 1

% of work done 19
Outer loop =================================
omp_get_thread_num(): 0

% of work done 54
Outer loop =================================
omp_get_thread_num(): 0

% of work done 55
Outer loop =================================
omp_get_thread_num(): 0

% of work done 56
Outer loop =================================
omp_get_thread_num(): 0

% of work done 57
Outer loop =================================
omp_get_thread_num(): 0

% of work done 58
Outer loop =================================
omp_get_thread_num(): 0

% of work done 59
Outer loop =================================
omp_get_thread_num(): 0

% of work done 60
Outer loop =================================
omp_get_thread_num(): 0

% of work done 61
Outer loop =================================
omp_get_thread_num(): 0

% of work done 62
Outer loop =================================
omp_get_thread_num(): 6
Outer loop =================================
omp_get_thread_num(): 6
Outer loop =================================
omp_get_thread_num(): 6
Outer loop =================================
omp_get_thread_num(): 6
Outer loop =================================
omp_get_thread_num(): 6
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 3
Outer loop =================================
omp_get_thread_num(): 1
Outer loop =================================
omp_get_thread_num(): 5
Outer loop =================================
omp_get_thread_num(): 5
Outer loop =================================
omp_get_thread_num(): 5
Outer loop =================================
omp_get_thread_num(): 5
Outer loop =================================
omp_get_thread_num(): 5
Outer loop =================================
omp_get_thread_num(): 5
Outer loop =================================
omp_get_thread_num(): 5
Outer loop =================================
omp_get_thread_num(): 5
Outer loop =================================
Outer loop =================================
omp_get_thread_num(): 4
Outer loop =================================
omp_get_thread_num(): 4
Outer loop =================================
omp_get_thread_num(): 4
Outer loop =================================
omp_get_thread_num(): 4
Outer loop =================================
omp_get_thread_num(): 4
Outer loop =================================
omp_get_thread_num(): 4
Outer loop =================================
omp_get_thread_num(): 4
Outer loop =================================
omp_get_thread_num(): 4
Outer loop =================================
omp_get_thread_num(): 4
Outer loop =================================
omp_get_thread_num(): 4
omp_get_thread_num(): 7
Outer loop =================================
omp_get_thread_num(): 7
Outer loop =================================
omp_get_thread_num(): 7
Outer loop =================================
omp_get_thread_num(): 7
Outer loop =================================
omp_get_thread_num(): 7
Outer loop =================================
omp_get_thread_num(): 7
Outer loop =================================
omp_get_thread_num(): 2
Outer loop =================================
omp_get_thread_num(): 2
Outer loop =================================
omp_get_thread_num(): 2
Outer loop =================================
omp_get_thread_num(): 2
Outer loop =================================
omp_get_thread_num(): 2
Outer loop =================================
omp_get_thread_num(): 2
Outer loop =================================
omp_get_thread_num(): 2

最佳答案

在循环中使用criticalatomic:

#pragma omp critical
{
(++prog);
}

或更好:

#pragma omp atomic
(++prog);

并考虑只让主线程打印进度。

if(omp_get_thread_num() == 0)
{
cout << "Progress: " << float(prog)/totalNumber;
}

关于c++ - Openmp:无法正确计算并行 for 循环内的作业状态,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28275795/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com