gpt4 book ai didi

c++ - 与 openmp 的 10 维蒙特卡洛集成

转载 作者:行者123 更新时间:2023-11-30 01:42:00 25 4
gpt4 key购买 nike

我正在尝试使用 openmp 学习并行化。我写了一个 c++ 脚本,它通过 MC 为函数计算 10 维积分:F = x1+ x2 + x3 +...+x10

现在我正在尝试将其转换为使用 4 线程的 openmp。我的串行代码给出了可理解的输出,所以我确信它工作正常。这是我的序列号:我想输出 N= 样本点数的每 4^k 次迭代。

/* compile with 

$ g++ -o monte ND_MonteCarlo.cpp
$ ./monte N

unsigned long long int for i, N
Maximum value for UNSIGNED LONG LONG INT 18446744073709551615
*/


#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
#include <cstdlib>
#include <ctime>

using namespace std;


//define multivariate function F(x1, x2, ...xk)

double f(double x[], int n)
{
double y;
int j;
y = 0.0;

for (j = 0; j < n; j = j+1)
{
y = y + x[j];
}

y = y;
return y;
}

//define function for Monte Carlo Multidimensional integration

double int_mcnd(double(*fn)(double[],int),double a[], double b[], int n, int m)

{
double r, x[n], v;
int i, j;
r = 0.0;
v = 1.0;


// step 1: calculate the common factor V
for (j = 0; j < n; j = j+1)
{
v = v*(b[j]-a[j]);
}

// step 2: integration
for (i = 1; i <= m; i=i+1)
{
// calculate random x[] points
for (j = 0; j < n; j = j+1)
{
x[j] = a[j] + (rand()) /( (RAND_MAX/(b[j]-a[j])));
}
r = r + fn(x,n);
}
r = r*v/m;

return r;
}




double f(double[], int);
double int_mcnd(double(*)(double[],int), double[], double[], int, int);



int main(int argc, char **argv)
{



/* define how many integrals */
const int n = 10;

double b[n] = {5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0,5.0};
double a[n] = {-5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0,-5.0};

double result, mean;
int m;

unsigned long long int i, N;
// initial seed value (use system time)
srand(time(NULL));


cout.precision(6);
cout.setf(ios::fixed | ios::showpoint);

// current time in seconds (begin calculations)
time_t seconds_i;
seconds_i = time (NULL);

m = 4; // initial number of intervals

// convert command-line input to N = number of points
N = atoi( argv[1] );

for (i=0; i <=N/pow(4,i); i++)
{
result = int_mcnd(f, a, b, n, m);
mean = result/(pow(10,10));
cout << setw(30) << m << setw(30) << result << setw(30) << mean <<endl;
m = m*4;
}



// current time in seconds (end of calculations)
time_t seconds_f;
seconds_f = time (NULL);
cout << endl << "total elapsed time = " << seconds_f - seconds_i << " seconds" << endl << endl;

return 0;
}

和输出:

N            integral                                mean_integral
4 62061079725.185936 6.206108
16 33459275100.477665 3.345928
64 -2204654740.788784 -0.220465
256 4347440045.990804 0.434744
1024 -1265056243.116922 -0.126506
4096 681660387.953380 0.068166
16384 -799507050.896809 -0.079951
65536 -462592561.594820 -0.046259
262144 50902035.836772 0.005090
1048576 -91104861.129695 -0.009110
4194304 3746742.588701 0.000375
16777216 -32967862.853915 -0.003297
67108864 17730924.602974 0.001773
268435456 -416824.977687 -0.00004
1073741824 2843188.477219 0.000284

但我认为我的并行代码根本不起作用。我当然知道我在做一些愚蠢的事情。因为我的线程数是 4,我想将结果除以 4,结果很荒谬。

这是相同代码的并行版本:

/* compile with 

$ g++ -fopenmp -Wunknown-pragmas -std=c++11 -o mcOMP parallel_ND_MonteCarlo.cpp -lm
$ ./mcOMP N

unsigned long long int for i, N
Maximum value for UNSIGNED LONG LONG INT 18446744073709551615
*/


#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <omp.h>

using namespace std;


//define multivariate function F(x1, x2, ...xk)

double f(double x[], int n)
{
double y;
int j;
y = 0.0;

for (j = 0; j < n; j = j+1)
{
y = y + x[j];
}

y = y;
return y;
}

//define function for Monte Carlo Multidimensional integration

double int_mcnd(double(*fn)(double[],int),double a[], double b[], int n, int m)

{
double r, x[n], v;
int i, j;
r = 0.0;
v = 1.0;


// step 1: calculate the common factor V
#pragma omp for
for (j = 0; j < n; j = j+1)
{
v = v*(b[j]-a[j]);
}

// step 2: integration
#pragma omp for
for (i = 1; i <= m; i=i+1)
{
// calculate random x[] points

for (j = 0; j < n; j = j+1)
{
x[j] = a[j] + (rand()) /( (RAND_MAX/(b[j]-a[j])));
}
r = r + fn(x,n);
}
r = r*v/m;

return r;
}




double f(double[], int);
double int_mcnd(double(*)(double[],int), double[], double[], int, int);



int main(int argc, char **argv)
{



/* define how many integrals */
const int n = 10;

double b[n] = {5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0};
double a[n] = {-5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0,-5.0};

double result, mean;
int m;

unsigned long long int i, N;
int NumThreads = 4;


// initial seed value (use system time)
srand(time(NULL));


cout.precision(6);
cout.setf(ios::fixed | ios::showpoint);

// current time in seconds (begin calculations)
time_t seconds_i;
seconds_i = time (NULL);

m = 4; // initial number of intervals

// convert command-line input to N = number of points
N = atoi( argv[1] );

#pragma omp parallel private(result, mean) shared(N, m) num_threads(NumThreads)
for (i=0; i <=N/pow(4,i); i++)
{
result = int_mcnd(f, a, b, n, m);
mean = result/(pow(10,10));
#pragma omp master
cout << setw(30) << m/4 << setw(30) << result/4 << setw(30) << mean/4 <<endl;
m = m*4;
}



// current time in seconds (end of calculations)
time_t seconds_f;
seconds_f = time (NULL);
cout << endl << "total elapsed time = " << seconds_f - seconds_i << " seconds" << endl << endl;

return 0;
}

我只希望主线程输出值。我编译了:

g++ -fopenmp -Wunknown-pragmas -std=c++11 -o mcOMP parallel_ND_MonteCarlo.cpp -lm

非常感谢您对修复代码的帮助和建议。非常感谢。

最佳答案

让我们看看您的程序做了什么。在 omp parallel 处,您的线程被生成,它们将并行执行剩余的代码。操作如:

m = m * 4;

未定义(通常没有意义,因为它们每次迭代执行四次)。

此外,当这些线程遇到 omp for 时,它们将共享循环的工作,即每次迭代将仅由某个线程执行一次。由于 int_mcnd 是在 parallel 区域内执行的,因此它的所有局部变量都是私有(private)的。您的代码中没有构造来实际收集那些私有(private)结果(resultmean 也是私有(private)的)。

正确的做法是使用带有reduction子句的并行for循环,表示有一个变量(r/v)在整个循环执行过程中被聚合。

为此,缩减变量需要在并行区域范围之外声明为共享变量。最简单的解决方案是将并行区域移动到 int_mcnd 中。这也避免了 m 的竞争条件。

还有一个障碍:rand 正在使用全局状态,至少我的实现是锁定的。由于大部分时间都花在 rand 上,因此您的代码会非常可扩展。解决方案是通过 rand_r 使用显式线程私有(private)状态。 (另请参见 this question)。

拼凑起来,修改后的代码如下所示:

double int_mcnd(double (*fn)(double[], int), double a[], double b[], int n, int m)
{
// Reduction variables need to be shared
double r = 0.0;
double v = 1.0;

#pragma omp parallel
// All variables declared inside are private
{
// step 1: calculate the common factor V
#pragma omp for reduction(* : v)
for (int j = 0; j < n; j = j + 1)
{
v = v * (b[j] - a[j]);
}

// step 2: integration
unsigned int private_seed = omp_get_thread_num();
#pragma omp for reduction(+ : r)
for (int i = 1; i <= m; i = i + 1)
{
// Note: X MUST be private, otherwise, you have race-conditions again
double x[n];
// calculate random x[] points
for (int j = 0; j < n; j = j + 1)
{
x[j] = a[j] + (rand_r(&private_seed)) / ((RAND_MAX / (b[j] - a[j])));
}
r = r + fn(x, n);
}
}
r = r * v / m;

return r;
}

double f(double[], int);
double int_mcnd(double (*)(double[], int), double[], double[], int, int);

int main(int argc, char** argv)
{

/* define how many integrals */
const int n = 10;

double b[n] = { 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0 };
double a[n] = { -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0 };

int m;

unsigned long long int i, N;
int NumThreads = 4;

// initial seed value (use system time)
srand(time(NULL));

cout.precision(6);
cout.setf(ios::fixed | ios::showpoint);

// current time in seconds (begin calculations)
time_t seconds_i;
seconds_i = time(NULL);

m = 4; // initial number of intervals

// convert command-line input to N = number of points
N = atoi(argv[1]);

for (i = 0; i <= N / pow(4, i); i++)
{
double result = int_mcnd(f, a, b, n, m);
double mean = result / (pow(10, 10));
cout << setw(30) << m << setw(30) << result << setw(30) << mean << endl;
m = m * 4;
}

// current time in seconds (end of calculations)
time_t seconds_f;
seconds_f = time(NULL);
cout << endl << "total elapsed time = " << seconds_f - seconds_i << " seconds" << endl << endl;

return 0;
}

请注意,我删除了除以四的部分,而且输出是在并行区域之外完成的。结果应该与串行版本相似(当然随机性除外)。

我在使用 -O3 的 16 核系统上观察到完美的 16 倍加速。

补充几点:

尽可能在本地声明变量。

如果线程开销是一个问题,您可以将并行区域移到外面,但是您需要更仔细地考虑并行执行,并找到共享缩减变量的解决方案。考虑到蒙特卡洛代码令人尴尬的并行性质,您可以通过删除 omp for 指令更紧密地坚持您的初始解决方案 - 这意味着每个线程都执行所有循环迭代。然后您可以手动汇总结果变量并打印出来。但我真的不明白这一点。

关于c++ - 与 openmp 的 10 维蒙特卡洛集成,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40336961/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com