gpt4 book ai didi

math - float 学有问题吗?

转载 作者:行者123 更新时间:2023-11-29 23:23:21 25 4
gpt4 key购买 nike

考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些不准确的情况?

最佳答案

二进制 floating point数学就是这样。在大多数编程语言中,它基于 IEEE 754 standard 。问题的关键在于,数字以这种格式表示为整数乘以 2 的幂;分母不是2的幂的有理数(如 0.1 ,即 1/10 )无法精确表示。

对于0.1在标准binary64格式,表示可以完全写成

  • 0.1000000000000000055511151231257827021181583404541015625以十进制表示,或者
  • 0x1.999999999999ap-4C99 hexfloat notation .

相比之下,有理数 0.1 ,即1/10 ,可以完全写成

  • 0.1以十进制表示,或者
  • 0x1.99999999999999...p-4类似于 C99 十六进制浮点表示法,其中 ...代表一个无休止的 9 序列。

常数0.20.3您的程序中的值也将近似于它们的真实值。恰好最接近的double0.2大于有理数0.2但最接近的double0.3小于有理数0.30.1的总和和0.2最终大于有理数 0.3因此不同意代码中的常量。

对浮点算术问题的相当全面的处理是 What Every Computer Scientist Should Know About Floating-Point Arithmetic 。有关更容易理解的解释,请参阅floating-point-gui.de .

Side Note: All positional (base-N) number systems share this problem with precision

普通的旧十进制(以 10 为基数)数字也有同样的问题,这就是为什么像 1/3 这样的数字最终会变成 0.333333333...

您刚刚偶然发现了一个数字 (3/10),它很容易用十进制表示,但不适合二进制系统。它也是双向的(在某种程度上):1/16 在十进制中是一个丑陋的数字(0.0625),但在二进制中它看起来像十进制的第 10,000 个(0.0001)** - 如果我们在由于我们在日常生活中使用以 2 为基数的数字系统的习惯,您甚至会看到这个数字并本能地理解您可以通过将某个东西减半、再减半、一次又一次地达到这个数字。

当然,这并不完全是 float 在内存中的存储方式(它们使用科学计数法的形式)。然而,它确实说明了二进制浮点精度误差往往会出现,因为我们通常感兴趣的“现实世界”数字通常是十的幂 - 但这只是因为我们使用十进制数字系统日 -今天。这也是为什么我们会说 71% 而不是“每 7 中就有 5”(71% 是一个近似值,因为 5/7 无法用任何十进制数字精确表示)。

所以不:二进制 float 并没有被破坏,它们只是碰巧和其他所有基于 N 的数字系统一样不完美:)

Side Side Note: Working with Floats in Programming

实际上,这种精度问题意味着您需要使用舍入函数将 float 四舍五入到您感兴趣的小数位数,然后再显示它们。

您还需要用允许一定程度容差的比较来替换相等测试,这意味着:

不要if (x == y) { ... }

而是做if (abs(x - y) < myToleranceValue) { ... } .

哪里abs是绝对值。 myToleranceValue需要根据您的特定应用进行选择 - 这与您准备允许的“回旋空间”有很大关系,以及您要比较的最大数字可能是多少(由于精度损失问题) )。请注意您选择的语言中的“epsilon”样式常量。这些可以用作容差值,但其有效性取决于您正在使用的数字的大小(大小),因为大数字的计算可能会超出 epsilon 阈值。

关于math - float 学有问题吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27134822/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com