gpt4 book ai didi

android - 位图纹理不会显示在 Android 上的帧缓冲区表面中

转载 作者:行者123 更新时间:2023-11-29 21:37:17 24 4
gpt4 key购买 nike

我正在尝试使用新的 EffectFactory/Effect 为屏幕外的图像添加效果(即帧缓冲区)。我看过 HelloEffects.java example在 SDK 中提供,我已经尝试过并且有效。除了它显然使用 GLSurfaceView 而这不是我想要的。

所以我选择了tests/effect/src/android/effect/cts/GLEnv.java设置 EGL 内容,我还从 HelloEffects 示例中获取了 TextureRenderer.java 和 GLToolbox。将它们全部混合在一起,我得到了下面的代码。

(附带说明,我还尝试了 tests/media/src/android/media/cts/OutputSurface.java 来设置 EGL 内容,我得到了完全相同的结果。)

当我运行它时,我得到的图像只是统一的蓝色。这对应于我用蓝色做的 glClear。这至少在某种程度上证明像素正在渲染到帧缓冲区,glReadPixels 正在查看这些像素并且位图输出正在工作。

但为什么纹理没有显示出来?原始纹理和应用效果的纹理均未显示。也没有检测到 GL 错误。

我已将代码缩减为单个文件工作示例,可以将其复制/粘贴到 Eclipse 中并运行。显然根据您的需要修改输入和输出图像路径。

在 Nexus 10/Android 4.3 和模拟器上测试。相同的结果。

import java.io.FileOutputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

import javax.microedition.khronos.egl.EGL10;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.egl.EGLContext;
import javax.microedition.khronos.egl.EGLDisplay;
import javax.microedition.khronos.egl.EGLSurface;


import android.media.effect.Effect;
import android.media.effect.EffectContext;
import android.media.effect.EffectFactory;
import android.os.Bundle;
import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;

import android.opengl.GLES20;
import android.opengl.GLUtils;



public class MainActivity extends Activity
{
private int[] mTextures = new int[2];
private EffectContext mEffectContext;
private Effect mEffect;
private TextureRenderer mTexRenderer = new TextureRenderer();
private int mImageWidth;
private int mImageHeight;


final static String imageFileOut = "/data/local/out.png";
final static String imageFileIn = "/data/local/lol.png";

private GLEnv mEnv;

@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mEnv = new GLEnv();
mEnv.makeCurrent();
mEffectContext = EffectContext.createWithCurrentGlContext();
mTexRenderer.init();
loadTextures();
initAndapplyEffect();
renderResult();
saveBitmap();
}

void saveBitmap()
{
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0);
ByteBuffer pixelBuffer = ByteBuffer.allocateDirect(mImageWidth * mImageHeight * 4).order(ByteOrder.nativeOrder());
GLES20.glReadPixels(0, 0, mImageWidth, mImageHeight, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, pixelBuffer);
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0);
mEnv.checkForEGLErrors("store Pixels");

Bitmap bitmap = Bitmap.createBitmap(mImageWidth, mImageHeight, Bitmap.Config.ARGB_8888);
bitmap.copyPixelsFromBuffer(pixelBuffer);

try
{
FileOutputStream fos = new FileOutputStream(imageFileOut);
bitmap.compress(Bitmap.CompressFormat.PNG, 100, fos);
fos.close();
} catch (Exception e) { e.printStackTrace(); }

}

private void initAndapplyEffect()
{
EffectFactory effectFactory = mEffectContext.getFactory();
if (mEffect != null)
{
mEffect.release();
}
mEffect = effectFactory.createEffect(EffectFactory.EFFECT_BRIGHTNESS);
mEffect.setParameter("brightness", 2.0f);
mEffect.apply(mTextures[0], mImageWidth, mImageHeight, mTextures[1]);

}

private int loadTextures()
{
// Generate textures
GLES20.glGenTextures(2, mTextures, 0);

// Load input bitmap
Bitmap bitmap = BitmapFactory.decodeFile(imageFileIn);

mImageWidth = bitmap.getWidth();
mImageHeight = bitmap.getHeight();
mTexRenderer.updateTextureSize(mImageWidth, mImageHeight);

// Upload to texture
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, mTextures[0]);
GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0, bitmap, 0);

// Set texture parameters
GLToolbox.initTexParams();

return mTextures[0];
}

private void renderResult()
{
mTexRenderer.renderTexture(mTextures[1]);
//mTexRenderer.renderTexture(mTextures[0]);
}


public class GLEnv {

private EGLContext mEGLContext;
private EGLSurface mEGLSurface;
private EGLDisplay mEGLDisplay;
private EGLConfig mEGLConfig;

private static final int EGL_CONTEXT_CLIENT_VERSION = 0x3098;
private static final int EGL_OPENGL_ES2_BIT = 0x0004;

public GLEnv() {
EGL10 egl = (EGL10)EGLContext.getEGL();

mEGLDisplay = egl.eglGetDisplay(EGL10.EGL_DEFAULT_DISPLAY);
checkForEGLErrors("eglGetDisplay");

int[] version = new int[2];
egl.eglInitialize(mEGLDisplay, version);
int[] configSpec = {
EGL10.EGL_SURFACE_TYPE, EGL10.EGL_PBUFFER_BIT,
EGL10.EGL_RED_SIZE, 8,
EGL10.EGL_GREEN_SIZE, 8,
EGL10.EGL_BLUE_SIZE, 8,
EGL10.EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
EGL10.EGL_NONE
};
EGLConfig[] configs = new EGLConfig[1];
int[] num_config = new int[1];
egl.eglChooseConfig(mEGLDisplay, configSpec, configs, 1, num_config);
checkForEGLErrors("eglChooseConfig");
if (num_config[0] < 1) {
throw new RuntimeException("Could not find a suitable config for EGL context!");
}
mEGLConfig = configs[0];

int[] attribs = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL10.EGL_NONE };
mEGLContext = egl.eglCreateContext(mEGLDisplay, mEGLConfig, EGL10.EGL_NO_CONTEXT, attribs);
checkForEGLErrors("eglCreateContext");

int[] surfaceSize = { EGL10.EGL_WIDTH, 1920, EGL10.EGL_HEIGHT, 1080, EGL10.EGL_NONE };
mEGLSurface = egl.eglCreatePbufferSurface(mEGLDisplay, mEGLConfig, surfaceSize);
checkForEGLErrors("eglCreatePbufferSurface");
}

public void makeCurrent() {
EGL10 egl = (EGL10)EGLContext.getEGL();
egl.eglMakeCurrent(mEGLDisplay, mEGLSurface, mEGLSurface, mEGLContext);
checkForEGLErrors("eglMakeCurrent");
}


public void checkForEGLErrors(String operation) {
EGL10 egl = (EGL10)EGLContext.getEGL();
int error = egl.eglGetError();
if (error != EGL10.EGL_SUCCESS) {
throw new RuntimeException("Operation '" + operation + "' caused EGL error: " + error);
}
}

}

private static final float[] TEX_VERTICES = {
0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f
};

private static final float[] POS_VERTICES = {
-1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 1.0f
};

public class TextureRenderer {

private int mProgram;
private int mTexSamplerHandle;
private int mTexCoordHandle;
private int mPosCoordHandle;

private FloatBuffer mTexVertices;
private FloatBuffer mPosVertices;

private int mViewWidth;
private int mViewHeight;

private int mTexWidth;
private int mTexHeight;

private static final String VERTEX_SHADER =
"attribute vec4 a_position;\n" +
"attribute vec2 a_texcoord;\n" +
"varying vec2 v_texcoord;\n" +
"void main() {\n" +
" gl_Position = a_position;\n" +
" v_texcoord = a_texcoord;\n" +
"}\n";

private static final String FRAGMENT_SHADER =
"precision mediump float;\n" +
"uniform sampler2D tex_sampler;\n" +
"varying vec2 v_texcoord;\n" +
"void main() {\n" +
" gl_FragColor = texture2D(tex_sampler, v_texcoord);\n" +
"}\n";



private static final int FLOAT_SIZE_BYTES = 4;

public void init() {
// Create program
mProgram = GLToolbox.createProgram(VERTEX_SHADER, FRAGMENT_SHADER);

// Bind attributes and uniforms
mTexSamplerHandle = GLES20.glGetUniformLocation(mProgram,
"tex_sampler");
mTexCoordHandle = GLES20.glGetAttribLocation(mProgram, "a_texcoord");
mPosCoordHandle = GLES20.glGetAttribLocation(mProgram, "a_position");

// Setup coordinate buffers
mTexVertices = ByteBuffer.allocateDirect(
TEX_VERTICES.length * FLOAT_SIZE_BYTES)
.order(ByteOrder.nativeOrder()).asFloatBuffer();
mTexVertices.put(TEX_VERTICES).position(0);
mPosVertices = ByteBuffer.allocateDirect(
POS_VERTICES.length * FLOAT_SIZE_BYTES)
.order(ByteOrder.nativeOrder()).asFloatBuffer();
mPosVertices.put(POS_VERTICES).position(0);
}

public void tearDown() {
GLES20.glDeleteProgram(mProgram);
}

public void updateTextureSize(int texWidth, int texHeight) {
mTexWidth = texWidth;
mTexHeight = texHeight;
computeOutputVertices();
}

public void updateViewSize(int viewWidth, int viewHeight) {
mViewWidth = viewWidth;
mViewHeight = viewHeight;
computeOutputVertices();
}

public void renderTexture(int texId) {
// Bind default FBO
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0);

// Use our shader program
GLES20.glUseProgram(mProgram);
GLToolbox.checkGlError("glUseProgram");

// Set viewport
GLES20.glViewport(0, 0, mViewWidth, mViewHeight);
GLToolbox.checkGlError("glViewport");

// Disable blending
GLES20.glDisable(GLES20.GL_BLEND);

// Set the vertex attributes
GLES20.glVertexAttribPointer(mTexCoordHandle, 2, GLES20.GL_FLOAT, false,
0, mTexVertices);
GLES20.glEnableVertexAttribArray(mTexCoordHandle);
GLES20.glVertexAttribPointer(mPosCoordHandle, 2, GLES20.GL_FLOAT, false,
0, mPosVertices);
GLES20.glEnableVertexAttribArray(mPosCoordHandle);
GLToolbox.checkGlError("vertex attribute setup");

// Set the input texture
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLToolbox.checkGlError("glActiveTexture");
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, texId);
GLToolbox.checkGlError("glBindTexture");
GLES20.glUniform1i(mTexSamplerHandle, 0);

// Draw
GLES20.glClearColor(0.0f, 0.0f, 0.5f, 1.0f);
GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
}

private void computeOutputVertices() {
if (mPosVertices != null) {
float imgAspectRatio = mTexWidth / (float)mTexHeight;
float viewAspectRatio = mViewWidth / (float)mViewHeight;
float relativeAspectRatio = viewAspectRatio / imgAspectRatio;
float x0, y0, x1, y1;
if (relativeAspectRatio > 1.0f) {
x0 = -1.0f / relativeAspectRatio;
y0 = -1.0f;
x1 = 1.0f / relativeAspectRatio;
y1 = 1.0f;
} else {
x0 = -1.0f;
y0 = -relativeAspectRatio;
x1 = 1.0f;
y1 = relativeAspectRatio;
}
float[] coords = new float[] { x0, y0, x1, y0, x0, y1, x1, y1 };
mPosVertices.put(coords).position(0);
}
}



}

public static class GLToolbox {

public static int loadShader(int shaderType, String source) {
int shader = GLES20.glCreateShader(shaderType);
if (shader != 0) {
GLES20.glShaderSource(shader, source);
GLES20.glCompileShader(shader);
int[] compiled = new int[1];
GLES20.glGetShaderiv(shader, GLES20.GL_COMPILE_STATUS, compiled, 0);
if (compiled[0] == 0) {
String info = GLES20.glGetShaderInfoLog(shader);
GLES20.glDeleteShader(shader);
shader = 0;
throw new RuntimeException("Could not compile shader " +
shaderType + ":" + info);
}
}
return shader;
}

public static int createProgram(String vertexSource,
String fragmentSource) {
int vertexShader = loadShader(GLES20.GL_VERTEX_SHADER, vertexSource);
if (vertexShader == 0) {
return 0;
}
int pixelShader = loadShader(GLES20.GL_FRAGMENT_SHADER, fragmentSource);
if (pixelShader == 0) {
return 0;
}

int program = GLES20.glCreateProgram();
if (program != 0) {
GLES20.glAttachShader(program, vertexShader);
checkGlError("glAttachShader");
GLES20.glAttachShader(program, pixelShader);
checkGlError("glAttachShader");
GLES20.glLinkProgram(program);
int[] linkStatus = new int[1];
GLES20.glGetProgramiv(program, GLES20.GL_LINK_STATUS, linkStatus,
0);
if (linkStatus[0] != GLES20.GL_TRUE) {
String info = GLES20.glGetProgramInfoLog(program);
GLES20.glDeleteProgram(program);
program = 0;
throw new RuntimeException("Could not link program: " + info);
}
}
return program;
}

public static void checkGlError(String op) {
int error;
while ((error = GLES20.glGetError()) != GLES20.GL_NO_ERROR) {
throw new RuntimeException(op + ": glError " + error);
}
}

public static void initTexParams() {
GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_LINEAR);
GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_LINEAR);
GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S,
GLES20.GL_CLAMP_TO_EDGE);
GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T,
GLES20.GL_CLAMP_TO_EDGE);
}

}
}

最佳答案

所以在超频了相当多的灰色小细胞后,我终于自己弄明白了。

问题在于 computeOutputVertices();这可能适用于 GLSurfaceView,但出于某种原因,无论它做什么都与 PBuffer 不兼容。只需注释该行,它就可以很好地工作。

关于android - 位图纹理不会显示在 Android 上的帧缓冲区表面中,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18141823/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com