gpt4 book ai didi

mysql - 计算整个数据列表中的行数

转载 作者:行者123 更新时间:2023-11-29 21:31:04 25 4
gpt4 key购买 nike

我有一个表格,其中包含特定比赛的比赛。

当我选择 MatchIDAuto 4050 时,我需要知道这是本次比赛总共 29 场比赛中的第 15 场比赛。

我可以通过简单的从 Match2 中选择 count(*) 显然确定有 29 场比赛,其中 CompetitionIDAuto = 669

有谁知道一种无需循环即可确定的方法,例如 4050 是 Match 15?

    --    -- Table structure for table `Match2`    --    CREATE TABLE IF NOT EXISTS `Match2` (    `MatchIDAuto` int(10) NOT NULL AUTO_INCREMENT,    `CompetitionIDAuto` int(10) NOT NULL DEFAULT '0',    `TeamHome` varchar(100) NOT NULL DEFAULT '0',    `TeamAway` varchar(100) NOT NULL DEFAULT '0',    `MatchDate` date NOT NULL DEFAULT '0000-00-00',    `MatchTime` time NOT NULL DEFAULT '00:00:00',    `MatchStartTime` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',    `VenueIDAuto` int(10) NOT NULL DEFAULT '0',    `GameEnded` int(1) NOT NULL DEFAULT '0',    `PredictionsGameEnded` int(1) NOT NULL DEFAULT '0',    `Result` varchar(50) NOT NULL DEFAULT '',    `ResultURL` varchar(100) NOT NULL DEFAULT '',    `DateCreated` date NOT NULL DEFAULT '0000-00-00',    `DateCreatedTimeStamp` int(10) NOT NULL DEFAULT '0',    `DateModified` date NOT NULL DEFAULT '0000-00-00',    `UserCreated` varchar(50) NOT NULL DEFAULT '',    `DisableThisMatch` int(1) NOT NULL DEFAULT '0',    `AllocatedTo` varchar(25) NOT NULL,    `MatchUpdated` tinyint(1) NOT NULL DEFAULT '0',    PRIMARY KEY (`MatchIDAuto`)    ) ENGINE=MyISAM  DEFAULT CHARSET=latin1 AUTO_INCREMENT=4234 ;    --    -- Dumping data for table `Match2`    --   INSERT INTO `Match2` (`MatchIDAuto`, `CompetitionIDAuto`, `TeamHome`, `TeamAway`, `MatchDate`, `MatchTime`, `MatchStartTime`, `VenueIDAuto`, `GameEnded`, `PredictionsGameEnded`, `Result`, `ResultURL`, `DateCreated`, `DateCreatedTimeStamp`, `DateModified`, `UserCreated`, `DisableThisMatch`, `AllocatedTo`, `MatchUpdated`) VALUES   (4036, 669, 'Brisbane Heat Women', 'Hobart Hurricanes Women', '2016-01-01', '03:40:00', '2015-12-31 21:40:00', 7, 0, 0, '', '', '2015-11-13', 1447473564, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4037, 669, 'Perth Scorchers Women', 'Adelaide Strikers Women', '2016-01-01', '04:10:00', '2015-12-31 22:10:00', 3, 0, 0, '', '', '2015-11-13', 1447474751, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4038, 669, 'Sydney Thunder Women', 'Brisbane Heat Women', '2016-01-02', '01:00:00', '2016-01-01 19:00:00', 316, 0, 0, '', '', '2015-11-13', 1447474966, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4039, 669, 'Melbourne Stars Women', 'Melbourne Renegades Women', '2016-01-02', '02:40:00', '2016-01-01 20:40:00', 8, 0, 0, '', '', '2015-11-13', 1447475064, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4040, 669, 'Sydney Thunder Women', 'Hobart Hurricanes Women', '2016-01-02', '07:00:00', '2016-01-02 01:00:00', 7, 0, 0, '', '', '2015-11-13', 1447475178, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4041, 669, 'Hobart Hurricanes Women', 'Brisbane Heat Women', '2016-01-03', '00:00:01', '2016-01-02 18:00:01', 316, 0, 0, '', '', '2015-11-13', 1447475258, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4042, 669, 'Melbourne Renegades Women', 'Melbourne Stars Women', '2016-01-03', '03:30:00', '2016-01-02 21:30:00', 8, 0, 0, '', '', '2015-11-13', 1447475350, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4043, 669, 'Hobart Hurricanes Women', 'Sydney Thunder Women', '2016-01-03', '04:00:00', '2016-01-02 22:00:00', 316, 0, 0, '', '', '2015-11-13', 1447475429, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4044, 669, 'Adelaide Strikers Women', 'Melbourne Stars Women', '2016-01-07', '23:00:00', '2016-01-07 17:00:00', 310, 0, 0, '', '', '2015-11-13', 1447475525, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4045, 669, 'Melbourne Renegades Women', 'Sydney Sixers Women', '2016-01-08', '03:30:00', '2016-01-07 21:30:00', 310, 0, 0, '', '', '2015-11-13', 1447475613, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4046, 669, 'Sydney Sixers Women', 'Adelaide Strikers Women', '2016-01-08', '23:00:00', '2016-01-08 17:00:00', 310, 0, 0, '', '', '2015-11-13', 1447475711, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4047, 669, 'Adelaide Strikers Women', 'Sydney Sixers Women', '2016-01-09', '03:30:00', '2016-01-08 21:30:00', 310, 0, 0, '', '', '2015-11-13', 1447475802, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4048, 669, 'Melbourne Renegades Women', 'Sydney Thunder Women', '2016-01-09', '03:40:00', '2016-01-08 21:40:00', 317, 0, 0, '', '', '2015-11-13', 1447476726, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4049, 669, 'Melbourne Stars Women', 'Adelaide Strikers Women', '2016-01-09', '23:00:00', '2016-01-09 17:00:00', 310, 0, 0, '', '', '2015-11-13', 1447476819, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4050, 669, 'Sydney Sixers Women', 'Melbourne Renegades Women', '2016-01-10', '03:30:00', '2016-01-09 21:30:00', 310, 0, 0, '', '', '2015-11-13', 1447476917, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4051, 669, 'Melbourne Stars Women', 'Sydney Thunder Women', '2016-01-15', '03:30:00', '2016-01-14 21:30:00', 318, 0, 0, '', '', '2015-11-13', 1447477125, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4052, 669, 'Hobart Hurricanes Women', 'Sydney Sixers Women', '2016-01-15', '03:30:00', '2016-01-14 21:30:00', 319, 0, 0, '', '', '2015-11-13', 1447477325, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4053, 669, 'Adelaide Strikers Women', 'Melbourne Renegades Women', '2016-01-15', '03:30:00', '2016-01-14 21:30:00', 320, 0, 0, '', '', '2015-11-13', 1447477775, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4054, 669, 'Adelaide Strikers Women', 'Brisbane Heat Women', '2016-01-15', '23:30:00', '2016-01-15 17:30:00', 320, 0, 0, '', '', '2015-11-13', 1447477920, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4055, 669, 'Sydney Sixers Women', 'Sydney Thunder Women', '2016-01-16', '02:40:00', '2016-01-15 20:40:00', 10, 0, 0, '', '', '2015-11-13', 1447478942, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4056, 669, 'Hobart Hurricanes Women', 'Melbourne Stars Women', '2016-01-16', '03:30:00', '2016-01-15 21:30:00', 315, 0, 0, '', '', '2015-11-13', 1447479213, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4057, 669, 'Perth Scorchers Women', 'Melbourne Renegades Women', '2016-01-16', '04:10:00', '2016-01-15 22:10:00', 320, 0, 0, '', '', '2015-11-13', 1447479324, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4058, 669, 'Sydney Thunder Women', 'Melbourne Stars Women', '2016-01-16', '23:00:00', '2016-01-16 17:00:00', 321, 0, 0, '', '', '2015-11-13', 1447479527, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4059, 669, 'Sydney Sixers Women', 'Hobart Hurricanes Women', '2016-01-16', '23:00:00', '2016-01-16 17:00:00', 322, 0, 0, '', '', '2015-11-13', 1447479733, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4060, 669, 'Melbourne Renegades Women', 'Adelaide Strikers Women', '2016-01-16', '23:30:00', '2016-01-16 17:30:00', 320, 0, 0, '', '', '2015-11-13', 1447479830, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4061, 669, 'Melbourne Renegades Women', 'Perth Scorchers Women', '2016-01-17', '04:10:00', '2016-01-16 22:10:00', 320, 0, 0, '', '', '2015-11-13', 1447479954, '2015-11-13', 'Jerry', 0, 'Jerry', 0),   (4064, 669, 'Semi Final', 'Semi Final', '2016-01-21', '00:00:01', '2016-01-20 18:00:01', 323, 0, 0, '', '', '2015-11-14', 1447523483, '2015-11-14', 'Jerry', 0, 'Jerry', 0),   (4065, 669, 'Semi Final', 'Semi Final', '2016-01-22', '00:00:01', '2016-01-21 18:00:01', 323, 0, 0, '', '', '2015-11-14', 1447523558, '2015-11-14', 'Jerry', 0, 'Jerry', 0),   (4066, 669, 'Final', 'Final', '2016-01-24', '00:00:01', '2016-01-23 18:00:01', 323, 0, 0, '', '', '2015-11-14', 1447523614, '2015-11-14', 'Jerry', 0, 'Jerry', 0);

最佳答案

我假设您的匹配项始终按升序(按日期)插入,以便第一个匹配项具有最低的 MatchIDAuto。

所以试试这个

SELECT m.MatchIDAuto, COUNT( * ) AS row_number
FROM Match2 m
JOIN Match2 m2 ON m.MatchIDAuto >= m2.MatchIDAuto
WHERE m.MatchIDAuto = 4050
GROUP BY m.MatchIDAuto

输出

+-------------+------------+
| MatchIDAuto | row_number |
+-------------+------------+
| 4050 | 15 |
+-------------+------------+

关于mysql - 计算整个数据列表中的行数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35260157/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com