gpt4 book ai didi

apache-spark - 执行pyspark.sql.DataFrame.take(4)需要1个多小时

转载 作者:行者123 更新时间:2023-11-29 15:55:35 25 4
gpt4 key购买 nike

我在 3 个虚拟机(即 1 个主虚拟机;2 个从虚拟机)上运行 Spark 1.6,所有虚拟机均具有 4 个内核和 16GB RAM。

我可以看到在spark-master webUI上注册的工作人员。

我想从我的 Vertica 数据库中检索数据来处理它。由于我无法运行复杂的查询,因此我尝试了虚拟查询来理解。我们认为这是一项简单的任务。

我的代码是:

df = sqlContext.read.format('jdbc').options(url='xxxx', dbtable='xxx', user='xxxx', password='xxxx').load()
four = df.take(4)

输出是(注意:我用 @IPSLAVE 替换从属虚拟机 IP:Port):

16/03/08 13:50:41 INFO SparkContext: Starting job: take at <stdin>:1
16/03/08 13:50:41 INFO DAGScheduler: Got job 0 (take at <stdin>:1) with 1 output partitions
16/03/08 13:50:41 INFO DAGScheduler: Final stage: ResultStage 0 (take at <stdin>:1)
16/03/08 13:50:41 INFO DAGScheduler: Parents of final stage: List()
16/03/08 13:50:41 INFO DAGScheduler: Missing parents: List()
16/03/08 13:50:41 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at take at <stdin>:1), which has no missing parents
16/03/08 13:50:41 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 5.4 KB, free 5.4 KB)
16/03/08 13:50:41 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 2.6 KB, free 7.9 KB)
16/03/08 13:50:41 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on @IPSLAVE (size: 2.6 KB, free: 511.5 MB)
16/03/08 13:50:41 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006
16/03/08 13:50:41 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at take at <stdin>:1)
16/03/08 13:50:41 INFO TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
16/03/08 13:50:41 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, @IPSLAVE, partition 0,PROCESS_LOCAL, 1922 bytes)
16/03/08 13:50:41 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on @IPSLAVE (size: 2.6 KB, free: 511.5 MB)
16/03/08 15:02:20 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 4299240 ms on @IPSLAVE (1/1)
16/03/08 15:02:20 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
16/03/08 15:02:20 INFO DAGScheduler: ResultStage 0 (take at <stdin>:1) finished in 4299.248 s
16/03/08 15:02:20 INFO DAGScheduler: Job 0 finished: take at <stdin>:1, took 4299.460581 s

如您所见,这确实需要很长时间。我的表实际上相当大(存储大约 2.2 亿行,每行 11 个字段),但是使用“普通”sql(例如 pyodbc)可以立即执行这样的查询。

我想我误解/误用了 Spark,您有什么想法或建议可以让它更好地工作吗?

最佳答案

虽然 Spark 支持通过 JDBC 进行有限谓词下推,但所有其他操作(例如限制、组、聚合)均在内部执行。不幸的是,这意味着 take(4) 将首先获取数据,然后应用限制。换句话说,您的数据库将执行(假设没有投影和过滤器)相当于:

SELECT * FROM table 

其余的将由 Spark 处理。其中涉及到一些优化(特别是 Spark evaluates partitions iteratively 来获取 LIMIT 请求的记录数量),但与数据库端优化相比,它仍然相当低效。

如果您想将limit推送到数据库,您必须使用子查询作为dbtable参数静态地执行此操作:

(sqlContext.read.format('jdbc')
.options(url='xxxx', dbtable='(SELECT * FROM xxx LIMIT 4) tmp', ....))
sqlContext.read.format("jdbc").options(Map(
"url" -> "xxxx",
"dbtable" -> "(SELECT * FROM xxx LIMIT 4) tmp",
))

请注意,子查询中的别名是强制性的。

注意:

一旦数据源 API v2 准备就绪,这种行为将来可能会得到改进:

关于apache-spark - 执行pyspark.sql.DataFrame.take(4)需要1个多小时,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56494227/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com