gpt4 book ai didi

sql - 优化大表执行 generate_series() 的查询

转载 作者:行者123 更新时间:2023-11-29 13:11:21 25 4
gpt4 key购买 nike

以下查询在 PostgreSQL 11.1 中需要超过 7 分钟:

SELECT 
'2019-01-19' as date,
'2019-01-19'::date - generate_series(first_observed, last_observed, interval '1 day')::date as days_to_date,
ROUND(AVG(price)) as price,
area_id
FROM
table_example
GROUP BY
days_to_date, area_id;

table_example 有大约 1500 万行
有什么办法可以优化吗?我已经添加了以下索引:

CREATE INDEX ON table_example (first_observed, last_observed);
CREATE INDEX ON table_example (area_id);

这是 EXPLAIN (ANALYZE,BUFFERS) 的输出:

GroupAggregate  (cost=3235559683.68..3377398628.68 rows=1418000 width=72) (actual time=334933.966..440096.869 rows=21688 loops=1)
Group Key: (('2019-01-19'::date - ((generate_series((first_observed)::timestamp with time zone, (last_observed)::timestamp with time zone, '1 day'::interval)))::date)), area_id
Buffers: local read=118167 dirtied=118167 written=117143, temp read=1634631 written=1635058
-> Sort (cost=3235559683.68..3271009671.18 rows=14179995000 width=40) (actual time=334923.933..391690.184 rows=380203171 loops=1)
Sort Key: (('2019-01-19'::date - ((generate_series((first_observed)::timestamp with time zone, (last_observed)::timestamp with time zone, '1 day'::interval)))::date)), area_id
Sort Method: external merge Disk: 9187584kB
Buffers: local read=118167 dirtied=118167 written=117143, temp read=1634631 written=1635058
-> Result (cost=0.00..390387079.39 rows=14179995000 width=40) (actual time=214.798..171717.941 rows=380203171 loops=1)
Buffers: local read=118167 dirtied=118167 written=117143
-> ProjectSet (cost=0.00..71337191.89 rows=14179995000 width=44) (actual time=214.796..102823.749 rows=380203171 loops=1)
Buffers: local read=118167 dirtied=118167 written=117143
-> Seq Scan on table_example (cost=0.00..259966.95 rows=14179995 width=44) (actual time=0.031..2449.511 rows=14179995 loops=1)
Buffers: local read=118167 dirtied=118167 written=117143
Planning Time: 0.409 ms
JIT:
Functions: 18
Options: Inlining true, Optimization true, Expressions true, Deforming true
Timing: Generation 5.034 ms, Inlining 13.010 ms, Optimization 121.440 ms, Emission 79.996 ms, Total 219.480 ms
Execution Time: 441133.410 ms

这是 table_example 的样子:

column name        data type
'house_pk' 'integer'
'date_in' 'date'
'first_observed' 'date'
'last_observed' 'date'
'price' 'numeric'
'area_id' 'integer'

有 60 个不同的 area_id。

查询正在具有 128 GB 内存的多核计算机(24 核)上运行。但是,设置可能不是最佳的。

最佳答案

在处理整个表时,索引通常是无用的(如果表行比索引宽得多,则可能只进行索引扫描除外)。

并且在处理整个表时,我看不到查询本身的性能优化空间。一件小事:

SELECT d.the_date
, <b>generate_series(d.the_date - last_observed
, d.the_date - first_observed) AS days_to_date</b>
, round(avg(price)) AS price
, area_id
FROM table_example
, (SELECT date '2019-01-19') AS d(the_date)
GROUP BY days_to_date, area_id;

假设first_observed & last_observeddate NOT NULL总是< date '2019-01-19' .否则你需要投/做更多。

这样,您只有两次减法,然后是 generate_series()处理整数(最快)。

添加的迷你子查询只是为了方便,只提供一次日期。在准备好的语句或函数中,您可以使用参数并且不需要这个:

     , (SELECT date '2019-01-19') AS d(the_date)

除此之外,如果EXPLAIN (ANALYZE, BUFFERS)提到“磁盘”(例如:Sort Method: external merge Disk: 3240kB),然后是 work_mem 的(临时)更高设置应该有帮助。见:

如果您负担不起更多的 RAM,并且聚合和/或排序步骤仍然会溢出到磁盘,那么使用 LATERAL 这样的查询可能有助于分而治之。加入:

SELECT d.the_date, f.*, a.area_id
FROM area a
, (SELECT date '2019-01-19') AS d(the_date)
, LATERAL (
SELECT generate_series(d.the_date - last_observed
, d.the_date - first_observed) AS days_to_date
, round(avg(price)) AS price
FROM table_example
WHERE area_id = a.area_id
GROUP BY 1
) f;

假设一个表 area , 显然。

关于sql - 优化大表执行 generate_series() 的查询,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54242362/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com