gpt4 book ai didi

sql - Django 慢查询性能提升

转载 作者:行者123 更新时间:2023-11-29 12:19:26 25 4
gpt4 key购买 nike

我将 Django 与 Postgres 结合使用,并有下表:

class Person(models.Model):
person_id=models.IntegerField(primary_key=True)
name = models.CharField(max_length=500, blank=True)
description = models.ManyToManyField('descriptions.Description', through='DescriptionPersonUser')

class DescriptionPersonUser(models.Model):
person = models.ForeignKey(Person)
description = models.ForeignKey('descriptions.Description')
user = models.ForeignKey(User)

class Meta:
managed = True
unique_together = ('person', 'description', 'user')

class Description(models.Model):
description_id=models.AutoField (primary_key=True)
description_word=models.CharField(max_length=50, blank=True, unique=True)

class AuthUser(models.Model):
id = models.IntegerField(primary_key=True) # AutoField?
...
username = models.CharField(unique=True, max_length=30)

Person 表有超过 1.5 mio 行,其他表各不超过 100 行。据我了解,执行“正常”执行的查询仍然是合理的。我想通过从 DescriptionPersonUser 表中注释计数来对 Person 表进行排序。

person_list = Person.objects.annotate(count=Count('descriptionpersonuser')).order_by('-count')[:10]

此查询加载耗时约 50000 毫秒。比我尝试在原始 sql 中执行它并改进了很多到 cca 1900 ms。

person_list= Person.objects.raw('SELECT "person"."person_id", COUNT("persons_descriptionpersonuser"."id") AS "count" FROM "person" LEFT OUTER JOIN "persons_descriptionpersonuser" ON ( "person"."person_id" = "persons_descriptionspersonuser"."person_id" ) GROUP BY "person"."person_id" ORDER BY "count" DESC, "person"."person_id" ASC LIMIT 10'),

我还在 persons_descriptionpersonuser 上创建了索引:

CREATE INDEX index_descriptionpersonuser ON persons_descriptionpersonuser (person_id, description_id, id);

所以我的问题是:

  1. 还有提高查询速度的余地吗?或者 1900 毫秒用于 1+ mio 行查询是否合适?
  2. 由于我没有发现创建的索引在查询速度上有任何差异,我如何检查索引是否正常工作或是否影响查询?

已编辑(根据 Tomasz Jakub Rup 添加 EXPLAIN ANALYZE 结果的建议):

没有 index_descriptionpersonuser:

Limit  (cost=138185.30..138185.33 rows=10 width=8) (actual time=2470.974..2470.976 rows=10 loops=1)
-> Sort (cost=138185.30..142177.82 rows=1597006 width=8) (actual time=2470.973..2470.975 rows=10 loops=1)
Sort Key: (count(persons_descriptionpersonuser.id)), person.person_id
Sort Method: top-N heapsort Memory: 25kB
-> GroupAggregate (cost=0.56..103674.58 rows=1597006 width=8) (actual time=0.402..1945.107 rows=1597006 loops=1)
Group Key: person.person_id
-> Merge Left Join (cost=0.56..79719.49 rows=1597006 width=8) (actual time=0.378..1014.179 rows=1597016 loops=1)
Merge Cond: (person.person_id = persons_descriptionpersonuse.person_id)
-> Index Only Scan using person_pkey on person (cost=0.43..75718.86 rows=1597006 width=4) (actual time=0.359..610.272 rows=1597006 loops=1)
Heap Fetches: 235898
-> Index Scan using persons_descriptionpersonuse_person_id on persons_descriptionpersonuser (cost=0.14..12.42 rows=19 width=8) (actual time=0.014..0.025 rows=20 loops=1)
Planning time: 17.879 ms
Execution time: 2472.821 ms
(13 rows)

使用 index_descriptionpersonuser:

Limit  (cost=138185.55..138185.58 rows=10 width=8) (actual time=2341.349..2341.352 rows=10 loops=1)
-> Sort (cost=138185.55..142178.07 rows=1597006 width=8) (actual time=2341.325..2341.325 rows=10 loops=1)
Sort Key: (count(persons_descriptionpersonuser.id)), person.person_id
Sort Method: top-N heapsort Memory: 25kB
-> GroupAggregate (cost=0.56..103674.83 rows=1597006 width=8) (actual time=0.106..1819.330 rows=1597006 loops=1)
Group Key: person.person_id
-> Merge Left Join (cost=0.56..79719.74 rows=1597006 width=8) (actual time=0.092..877.874 rows=1597016 loops=1)
Merge Cond: (person.person_id = persons_descriptionpersonuser.person_id)
-> Index Only Scan using person_pkey on person (cost=0.43..75718.86 rows=1597006 width=4) (actual time=0.023..473.046 rows=1597006 loops=1)
Heap Fetches: 235898
-> Index Only Scan using index_descriptionpersonuser on persons_descriptionpersonuser (cost=0.14..12.44 rows=20 width=8) (actual time=0.059..0.085 rows=20 loops=1)
Heap Fetches: 20
Planning time: 0.715 ms
Execution time: 2343.815 ms
(14 rows)

作为Tomasz Jakub Rup建议优化的 sql 查询现在需要 cca 40 毫秒。以下是结果:

Limit  (cost=1.50..1.52 rows=8 width=8) (actual time=0.061..0.064 rows=10 loops=1)
-> Sort (cost=1.50..1.52 rows=8 width=8) (actual time=0.060..0.061 rows=10 loops=1)
Sort Key: (count(id)), person_id
Sort Method: quicksort Memory: 25kB
-> HashAggregate (cost=1.30..1.38 rows=8 width=8) (actual time=0.039..0.044 rows=10 loops=1)
Group Key: person_id
-> Seq Scan on persons_descriptionpersonuser (cost=0.00..1.20 rows=20 width=8) (actual time=0.011..0.018 rows=20 loops=1)
Planning time: 0.175 ms
Execution time: 0.129 ms
(9 rows)

谢谢

最佳答案

第二个问题的答案:

查看结果

EXPLAIN ANALYZE SELECT "person"."person_...

查询。如果您在结果中找到 index_descriptionpersonuser 是,则您的查询使用索引。如果不是,请尝试创建其他索引。也许仅在 person_id 上?

第一个问题:是的,这个查询可以更快。显示 EXPLAIN ANALYZE... 的结果,然后我们尝试加快查询速度。

注意

原始查询可能更快,因为它们从 PostgreSQL 缓存中获取数据。

关于sql - Django 慢查询性能提升,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34321314/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com