gpt4 book ai didi

postgresql - PostgreSQL:一个索引快而另一个索引慢

转载 作者:行者123 更新时间:2023-11-29 11:48:56 26 4
gpt4 key购买 nike

我们有一个4.5亿行的数据库,结构如下:

   uid      id_1     id_2   d1  d2  d3  d4  d5  d6  d7  d8  d9  d10 d11 d12 d13 d14 d15 d16 d17
81038392 5655067 5468882 373 117 185 152 199 173 168 138 185 159 154 34 38 50 34 41 57
81038393 5655067 5468883 374 116 184 118 170 143 144 113 164 137 138 37 39 53 37 42 60
81038394 5655067 5468884 371 118 187 118 170 143 144 105 157 131 136 32 35 47 32 39 53
81038395 5655067 5468885 370 116 184 118 170 143 144 105 157 131 136 31 35 46 31 38 53
81038396 5655067 5468886 370 117 185 118 170 143 144 105 157 131 136 29 34 44 29 37 50
81038397 5655067 5470853 368 117 185 110 163 137 140 105 157 131 136 34 36 48 34 39 55
81038398 5655067 5470854 372 119 188 118 170 143 144 113 164 137 138 34 36 49 34 40 55
81038399 5655067 5470855 360 115 182 103 151 131 136 98 145 125 131 30 34 45 30 38 51
81038400 5655067 5470856 357 112 177 103 151 131 136 98 145 125 131 30 34 45 30 37 51
81038401 5655067 5470857 356 111 176 103 151 131 136 98 145 125 131 28 33 43 28 36 50
81038402 5655067 5470858 358 113 179 103 151 131 136 98 145 125 131 31 35 46 31 38 52
81038403 5655067 5472811 344 109 173 152 199 173 168 138 185 159 154 31 36 46 31 39 52
81038404 5655068 5468882 373 117 185 152 199 173 168 138 185 159 154 34 38 50 34 41 57
81038405 5655068 5468883 374 116 184 118 170 143 144 113 164 137 138 37 39 53 37 42 60
81038406 5655068 5468884 371 118 187 118 170 143 144 105 157 131 136 32 35 47 32 39 53
81038407 5655068 5468885 370 116 184 118 170 143 144 105 157 131 136 31 35 46 31 38 53
81038408 5655068 5468886 370 117 185 118 170 143 144 105 157 131 136 29 34 44 29 37 50
81038409 5655068 5470853 368 117 185 110 163 137 140 105 157 131 136 34 36 48 34 39 55
81038410 5655068 5470854 372 119 188 118 170 143 144 113 164 137 138 34 36 49 34 40 55
81038411 5655068 5470855 360 115 182 103 151 131 136 98 145 125 131 30 34 45 30 38 51
81038412 5655068 5470856 357 112 177 103 151 131 136 98 145 125 131 30 34 45 30 37 51
81038413 5655068 5470857 356 111 176 103 151 131 136 98 145 125 131 28 33 43 28 36 50
81038414 5655068 5470858 358 113 179 103 151 131 136 98 145 125 131 31 35 46 31 38 52


我们需要经常做这样的查询:
问题1:
EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM mytable WHERE id_1 = 5655067;

QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------
Index Scan using id_1_idx on mytable (cost=0.57..99187.68 rows=25742 width=80) (actual time=47.081..2600.899 rows=21487 loops=1)
Index Cond: (id_1 = 5655067)
Buffers: shared hit=9 read=4816
I/O Timings: read=2563.181
Planning time: 0.151 ms
Execution time: 2602.320 ms
(6 rows)

问题2:
EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM mytable WHERE id_2 = 5670433;

QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on mytable (cost=442.02..89887.42 rows=23412 width=80) (actual time=113.200..42127.512 rows=21487 loops=1)
Recheck Cond: (id_2 = 5670433)
Heap Blocks: exact=16988
Buffers: shared hit=30 read=17020
I/O Timings: read=41971.798
-> Bitmap Index Scan on id_2_idx (cost=0.00..436.16 rows=23412 width=0) (actual time=104.928..104.929 rows=21487 loops=1)
Index Cond: (id_2 = 5670433)
Buffers: shared hit=2 read=60
I/O Timings: read=99.235
Planning time: 0.163 ms
Execution time: 42132.556 ms
(11 rows)

大约有23000到25000种独特的
id_1id_2值,这两个查询将始终返回大约24000行数据。我们只读取数据,数据不会随时间变化。
问题是:
查询1大约需要3秒,这是有点多,但仍然可以忍受。
查询2需要30-40秒,这对我们来说太多了,因为该服务是交互式web服务。
我们已经索引了 id_1id_2。我们还在 id_1id_2上添加了一个联合索引,这是Azure PostgreSQL作为数据所在的服务平台所建议的。它没有帮助。
我的假设是,查询1速度很快,因为所有行都按顺序位于数据库中,而当使用查询2时,行总是按非顺序分布在整个数据库中。
重新构造数据以加快查询2不是一个好主意,因为这样会降低查询1的性能我知道这种数据的结构方式并不理想,但我无法控制它。有什么建议可以加快查询2到合理的速度吗?
编辑2:
创建索引语句:
CREATE INDEX id_1_idx ON mytable (id_1);
CREATE INDEX id_2_idx ON mytable (id_2);

用吸尘器清理桌子并没有改变计划。抽真空后, EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM mytable WHERE id_1 = 5655067的输出非常相似。以下是详细真空的输出:
VACUUM (VERBOSE, ANALYZE) mytable;

INFO: vacuuming "public.mytable"
INFO: index "mytable_pkey" now contains 461691169 row versions in 1265896 pages
DETAIL: 0 index row versions were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU: user: 0.00 s, system: 0.00 s, elapsed: 2695.21 s.
INFO: index "id_1_idx" now contains 461691169 row versions in 1265912 pages
DETAIL: 0 index row versions were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU: user: 0.00 s, system: 0.00 s, elapsed: 1493.20 s.
INFO: index "id_2_idx" now contains 461691169 row versions in 1265912 pages
DETAIL: 0 index row versions were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU: user: 0.00 s, system: 0.00 s, elapsed: 1296.06 s.
INFO: index "mytable_id_1_id_2_idx" now contains 461691169 row versions in 1265912 pages
DETAIL: 0 index row versions were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU: user: 0.00 s, system: 0.00 s, elapsed: 2364.16 s.
INFO: "mytable": found 0 removable, 389040319 nonremovable row versions in 5187205 out of 6155883 pages
DETAIL: 0 dead row versions cannot be removed yet, oldest xmin: 12767
There were 0 unused item pointers.
Skipped 0 pages due to buffer pins, 0 frozen pages.
0 pages are entirely empty.
CPU: user: 0.00 s, system: 0.00 s, elapsed: 13560.60 s.
INFO: analyzing "public.mytable"
INFO: "mytable": scanned 30000 of 6155883 pages, containing 2250000 live rows and 0 dead rows; 30000 rows in sample, 461691225 estimated total rows
VACUUM

最佳答案

TL;博士
存储I/O是您的主要瓶颈+没有足够的RAM用于索引,因为您可以自己简单地计算:
对于位图堆扫描,可以计算大约2.5毫秒(41971.798毫秒内读取17020个块)的平均块读取延迟,这太慢了。
避免磁盘读取的唯一方法是大量RAM。更快的存储将使系统更具可伸缩性,因为这很可能不是数据库中唯一的查询类型,也不是唯一的表。
长版本:
读取EXPLAIN的完美输出表明,规划师所做的成本评估远远不够,性能下降来自磁盘读取。
正如您所写的,数据不会随着时间的推移而改变(因此,您事先知道值的范围),您还可以在这两列上对表进行范围划分,然后这两列只需要扫描特定的分区(使用较小的索引,读取较小的表堆)。但是,如果访问这些数据的应用程序最终访问的数据范围或多或少也不会有太大帮助。
因此,您应该考虑替换存储子系统,以便能够在应用程序的性能要求范围内处理查询。
我怀疑PostgreSQL服务器仍在HDD而不是SSD上运行。只有120M行的小测试显示了这两个索引的以下特性:

create table nums (uid integer primary key, id_1 integer, id_2 integer, d1 integer, d2 integer, d3 integer, d4 integer, d5 integer, d6 integer, d7 integer, d8 integer, d9 integer, d10 integer, d11 integer, d12 integer, d13 integer, d14 integer, d15 integer, d16 integer, d17 integer);

INSERT INTO nums select generate_series(80000001, 200000000) AS uid, (random() * 23000)::integer + 5600000 AS id_1, (random() * 25000)::integer + 5600000 AS id_2, (random() * 1000)::integer AS d1, (random() * 1000)::integer AS d2, (random() * 1000)::integer AS d3, (random() * 1000)::integer AS d4, (random() * 1000)::integer AS d5, (random() * 1000)::integer AS d6, (random() * 1000)::integer AS d7, (random() * 1000)::integer AS d8, (random() * 1000)::integer AS d9, (random() * 1000)::integer AS d10, (random() * 1000)::integer AS d11, (random() * 100)::integer AS d12, (random() * 100)::integer AS d13, (random() * 100)::integer AS d14, (random() * 100)::integer AS d15, (random() * 100)::integer AS d16, (random() * 100)::integer AS d17;

create index id_1_idx on nums (id_1);
create index id_2_idx on nums (id_2);
cluster nums using id_1_idx;

…导致以下结果(两个冷读):
explain (analyze, buffers) select * from nums where id_1 = 5606001;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
Index Scan using id_1_idx on nums (cost=0.57..5816.92 rows=5198 width=80) (actual time=1.680..6.394 rows=5185 loops=1)
Index Cond: (id_1 = 5606001)
Buffers: shared read=88
I/O Timings: read=4.397
Planning Time: 4.002 ms
Execution Time: 7.475 ms
(6 rows)

Time: 15.924 ms

…对于 id_2
explain (analyze, buffers) select * from nums where id_2 = 5606001; 
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------
Index Scan using id_2_idx on nums (cost=0.57..5346.53 rows=4777 width=80) (actual time=0.376..985.689 rows=4748 loops=1)
Index Cond: (id_2 = 5606001)
Buffers: shared hit=1 read=4755
I/O Timings: read=972.555
Planning Time: 0.203 ms
Execution Time: 986.590 ms
(6 rows)

Time: 987.296 ms

所以虽然我的表是“仅仅”12gib+3x2.5gib(PK+2索引)仍然足够快。
如果服务器已经在SSD上运行,请确保(物理上)为WAL/log、表数据(表空间)、索引(表空间)分离数据存储,以尽可能从并行中获益,并减少同一系统上其他服务/应用程序造成的I/O干扰。
还要考虑一个服务器系统,它的表和索引数据的内存要大得多(对于这个大约48 GiB的表+每个索引大约10 GiB,假设所有 integer列都是),然后进行一次预热,将数据从磁盘推送到内存中。至少索引应该能够完全保留在内存中。
编辑:
我的服务器不使用位图(索引+堆)扫描的原因是我在SSD上运行,并且我已经调整了从默认的 41.1的随机页面开销。当然,对于硬盘系统来说,这毫无意义。
编辑2:
对这种情况的重新测试揭示了一种有趣的行为:
在我的测试中,我假设第一列 uid是主键列,并且是 serial(顺序整数),根据它,条目最初在磁盘上排序。在生成数据时,有趣的索引列 id_1id_2的值都是随机生成的,这通常是大型表的最坏情况。
然而,在这种情况下并非如此。在创建测试数据和索引之后,在分析表之后,但在使用列 id_1上的索引重新排序数据之前,我现在得到这些结果:
explain (analyze, buffers) select * from nums where id_1 = 5606001;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on nums (cost=63.32..7761.68 rows=5194 width=80) (actual time=1.978..41.007 rows=5210 loops=1)
Recheck Cond: (id_1 = 5606001)
Heap Blocks: exact=5198
Buffers: shared read=5217
I/O Timings: read=28.732
-> Bitmap Index Scan on id_1_idx (cost=0.00..62.02 rows=5194 width=0) (actual time=1.176..1.176 rows=5210 loops=1)
Index Cond: (id_1 = 5606001)
Buffers: shared read=19
I/O Timings: read=0.124
Planning Time: 7.214 ms
Execution Time: 41.419 ms
(11 rows)

…和:
explain (analyze, buffers) select * from nums where id_2 = 5606001;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on nums (cost=58.52..7133.04 rows=4768 width=80) (actual time=7.305..43.830 rows=4813 loops=1)
Recheck Cond: (id_2 = 5606001)
Heap Blocks: exact=4805
Buffers: shared hit=12 read=4810
I/O Timings: read=28.181
-> Bitmap Index Scan on id_2_idx (cost=0.00..57.33 rows=4768 width=0) (actual time=5.102..5.102 rows=4813 loops=1)
Index Cond: (id_2 = 5606001)
Buffers: shared read=17
I/O Timings: read=2.414
Planning Time: 0.227 ms
Execution Time: 44.197 ms
(11 rows)

此处提供所有计划+优化:
using id_1_idx
using id_2_idx
我还遵循了自己的最佳实践,将索引分离到不同物理SSD上的另一个表空间。
如我们所见,要获取~5000个结果行,它必须在这里或多或少地读取相同数量的块,在这两种情况下都使用位图堆扫描。
在这种情况下,两列的相关性:
 attname | correlation | n_distinct 
---------+-------------+------------
id_1 | -0.0047043 | 23003
id_2 | 0.00157998 | 25004

现在,在 CLUSTER ... USING id_1_idx之后并在重新分析之后重新测试查询,结果如下所示:
 attname | correlation  | n_distinct 
---------+--------------+------------
id_1 | 1 | 22801
id_2 | -0.000898521 | 24997

……表现如下:
explain (analyze, buffers) select * from nums where id_1 = 5606001;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Index Scan using id_1_idx on nums (cost=0.57..179.02 rows=5083 width=80) (actual time=2.604..5.256 rows=5210 loops=1)
Index Cond: (id_1 = 5606001)
Buffers: shared read=90
I/O Timings: read=4.107
Planning Time: 4.039 ms
Execution Time: 5.563 ms
(6 rows)

……这比预期的要好得多,但是:
explain (analyze, buffers) select * from nums where id_2 = 5606001;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on nums (cost=58.57..7140.12 rows=4775 width=80) (actual time=5.866..99.707 rows=4813 loops=1)
Recheck Cond: (id_2 = 5606001)
Heap Blocks: exact=4806
Buffers: shared read=4823
I/O Timings: read=31.389
-> Bitmap Index Scan on id_2_idx (cost=0.00..57.38 rows=4775 width=0) (actual time=2.992..2.992 rows=4813 loops=1)
Index Cond: (id_2 = 5606001)
Buffers: shared read=17
I/O Timings: read=0.338
Planning Time: 0.210 ms
Execution Time: 100.155 ms
(11 rows)

……速度是第一次随机运行时的两倍多,尽管读取的块数几乎与第一次随机运行时的块数完全相同。
为什么速度慢了这么多?
使用index id_1_idx对表数据进行物理重新排序也会影响列的物理顺序。现在,位图堆扫描的目的是从位图索引扫描中获取按物理(磁盘)顺序读取的块列表。在第一种情况下(随机),很有可能多个行与位于磁盘上连续块中的条件匹配,从而减少随机磁盘访问。
有趣的是(但这可能只是因为我在SSD上运行),禁用位图扫描会显示可接受的数字:
explain (analyze, buffers) select * from nums where id_2 = 5606001;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Index Scan using id_2_idx on nums (cost=0.57..7257.12 rows=4775 width=80) (actual time=0.151..35.453 rows=4813 loops=1)
Index Cond: (id_2 = 5606001)
Buffers: shared read=4823
I/O Timings: read=30.051
Planning Time: 1.927 ms
Execution Time: 35.810 ms
(6 rows)

所有这些数字几乎都是冷启动执行(如您所见,没有或非常低的 Buffers: shared hit数字。
有趣的是,对于 id_2,位图扫描和索引扫描的I/O计时非常相似,但是位图扫描似乎会带来巨大的开销。

关于postgresql - PostgreSQL:一个索引快而另一个索引慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55001312/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com