- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这是我的pg_search
方法:
pg_search_scope :node_search, against: [:name, :user_id, :circa, :cached_tagged_user_names, :cached_user_tag_list],
using: { tsearch: { any_word: true, dictionary: :english, prefix: true} },
:associated_against => {
comments: [:message],
user: [:first_name, :last_name, :email],
memberships: [:relation],
user_tags: [:name]
}
不是 prefix: true
for tsearch
像 docs recommend .
但是,至少在 1 个特定情况下,它并没有像我预期的那样工作。
我有一个如下所示的 Node
对象:
=> [#<Node id: 85, name: "House Fire 2", family_tree_id: 57, user_id: 57, media_id: 228, media_type: "Video", created_at: "2015-05-15 00:20:26", updated_at: "2015-06-08 22:25:49", circa: nil, is_comment: nil, cached_votes_total: 0, cached_votes_score: 0, cached_votes_up: 0, cached_votes_down: 0, cached_weighted_score: 0, cached_weighted_total: 0, cached_weighted_average: 0.0, cached_user_tag_list: "danny@test.com, abc@test.com", cached_num_user_tags: 2, cached_tagged_user_names: ["Daniel Marty", "Marcamus Prime"]>]
注意属性:cached_user_tag_list
,其中包括电子邮件地址:danny@test.com
。
然而,当我进行以下搜索时,这些是我得到的结果:
[185] pry(main)> Node.node_search("dann")
Node Load (11.3ms) SELECT "nodes".*, ((ts_rank((to_tsvector('english', coalesce("nodes"."name"::text, '')) || to_tsvector('english', coalesce("nodes"."user_id"::text, '')) || to_tsvector('english', coalesce("nodes"."circa"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_tagged_user_names"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_user_tag_list"::text, '')) || to_tsvector('english', coalesce(pg_search_121ea89914a721445aee70.pg_search_344e3c62d13849726da22e::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_acfcdbc0b3d3a65f40eab7::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_eeb842708b24d4f7fcf549::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_cb8eb1b84bf18ee1412ffd::text, '')) || to_tsvector('english', coalesce(pg_search_b1bc4c0f44e7f4799d8caf.pg_search_9474fb5b090e75ade5136f::text, '')) || to_tsvector('english', coalesce(pg_search_93dd21271636bd02b16bc3.pg_search_484f77386a5aecc6e01094::text, ''))), (to_tsquery('english', ''' ' || 'dann' || ' ''' || ':*')), 0))) AS pg_search_rank FROM "nodes" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("comments"."message"::text, ' ') AS pg_search_344e3c62d13849726da22e FROM "nodes" INNER JOIN "comments" ON "comments"."node_id" = "nodes"."id" GROUP BY "nodes"."id") pg_search_121ea89914a721445aee70 ON pg_search_121ea89914a721445aee70.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("users"."first_name"::text, ' ') AS pg_search_acfcdbc0b3d3a65f40eab7, string_agg("users"."last_name"::text, ' ') AS pg_search_eeb842708b24d4f7fcf549, string_agg("users"."email"::text, ' ') AS pg_search_cb8eb1b84bf18ee1412ffd FROM "nodes" INNER JOIN "users" ON "users"."id" = "nodes"."user_id" GROUP BY "nodes"."id") pg_search_4aab10cdca183dac25f479 ON pg_search_4aab10cdca183dac25f479.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("memberships"."relation"::text, ' ') AS pg_search_9474fb5b090e75ade5136f FROM "nodes" INNER JOIN "family_trees" ON "family_trees"."id" = "nodes"."family_tree_id" INNER JOIN "memberships" ON "memberships"."family_tree_id" = "family_trees"."id" GROUP BY "nodes"."id") pg_search_b1bc4c0f44e7f4799d8caf ON pg_search_b1bc4c0f44e7f4799d8caf.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("tags"."name"::text, ' ') AS pg_search_484f77386a5aecc6e01094 FROM "nodes" INNER JOIN "taggings" ON "taggings"."taggable_id" = "nodes"."id" AND "taggings"."taggable_type" = 'Node' AND "taggings"."context" = 'user_tags' INNER JOIN "tags" ON "tags"."id" = "taggings"."tag_id" GROUP BY "nodes"."id") pg_search_93dd21271636bd02b16bc3 ON pg_search_93dd21271636bd02b16bc3.id = "nodes"."id" WHERE (((to_tsvector('english', coalesce("nodes"."name"::text, '')) || to_tsvector('english', coalesce("nodes"."user_id"::text, '')) || to_tsvector('english', coalesce("nodes"."circa"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_tagged_user_names"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_user_tag_list"::text, '')) || to_tsvector('english', coalesce(pg_search_121ea89914a721445aee70.pg_search_344e3c62d13849726da22e::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_acfcdbc0b3d3a65f40eab7::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_eeb842708b24d4f7fcf549::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_cb8eb1b84bf18ee1412ffd::text, '')) || to_tsvector('english', coalesce(pg_search_b1bc4c0f44e7f4799d8caf.pg_search_9474fb5b090e75ade5136f::text, '')) || to_tsvector('english', coalesce(pg_search_93dd21271636bd02b16bc3.pg_search_484f77386a5aecc6e01094::text, ''))) @@ (to_tsquery('english', ''' ' || 'dann' || ' ''' || ':*')))) ORDER BY pg_search_rank DESC, "nodes"."id" ASC
=> [#<Node id: 85, name: "House Fire 2", family_tree_id: 57, user_id: 57, media_id: 228, media_type: "Video", created_at: "2015-05-15 00:20:26", updated_at: "2015-06-08 22:25:49", circa: nil, is_comment: nil, cached_votes_total: 0, cached_votes_score: 0, cached_votes_up: 0, cached_votes_down: 0, cached_weighted_score: 0, cached_weighted_total: 0, cached_weighted_average: 0.0, cached_user_tag_list: "danny@test.com, abc@test.com", cached_num_user_tags: 2, cached_tagged_user_names: ["Daniel Marty", "Marcamus Prime"]>]
[186] pry(main)> Node.node_search("dan")
Node Load (4.2ms) SELECT "nodes".*, ((ts_rank((to_tsvector('english', coalesce("nodes"."name"::text, '')) || to_tsvector('english', coalesce("nodes"."user_id"::text, '')) || to_tsvector('english', coalesce("nodes"."circa"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_tagged_user_names"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_user_tag_list"::text, '')) || to_tsvector('english', coalesce(pg_search_121ea89914a721445aee70.pg_search_344e3c62d13849726da22e::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_acfcdbc0b3d3a65f40eab7::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_eeb842708b24d4f7fcf549::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_cb8eb1b84bf18ee1412ffd::text, '')) || to_tsvector('english', coalesce(pg_search_b1bc4c0f44e7f4799d8caf.pg_search_9474fb5b090e75ade5136f::text, '')) || to_tsvector('english', coalesce(pg_search_93dd21271636bd02b16bc3.pg_search_484f77386a5aecc6e01094::text, ''))), (to_tsquery('english', ''' ' || 'dan' || ' ''' || ':*')), 0))) AS pg_search_rank FROM "nodes" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("comments"."message"::text, ' ') AS pg_search_344e3c62d13849726da22e FROM "nodes" INNER JOIN "comments" ON "comments"."node_id" = "nodes"."id" GROUP BY "nodes"."id") pg_search_121ea89914a721445aee70 ON pg_search_121ea89914a721445aee70.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("users"."first_name"::text, ' ') AS pg_search_acfcdbc0b3d3a65f40eab7, string_agg("users"."last_name"::text, ' ') AS pg_search_eeb842708b24d4f7fcf549, string_agg("users"."email"::text, ' ') AS pg_search_cb8eb1b84bf18ee1412ffd FROM "nodes" INNER JOIN "users" ON "users"."id" = "nodes"."user_id" GROUP BY "nodes"."id") pg_search_4aab10cdca183dac25f479 ON pg_search_4aab10cdca183dac25f479.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("memberships"."relation"::text, ' ') AS pg_search_9474fb5b090e75ade5136f FROM "nodes" INNER JOIN "family_trees" ON "family_trees"."id" = "nodes"."family_tree_id" INNER JOIN "memberships" ON "memberships"."family_tree_id" = "family_trees"."id" GROUP BY "nodes"."id") pg_search_b1bc4c0f44e7f4799d8caf ON pg_search_b1bc4c0f44e7f4799d8caf.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("tags"."name"::text, ' ') AS pg_search_484f77386a5aecc6e01094 FROM "nodes" INNER JOIN "taggings" ON "taggings"."taggable_id" = "nodes"."id" AND "taggings"."taggable_type" = 'Node' AND "taggings"."context" = 'user_tags' INNER JOIN "tags" ON "tags"."id" = "taggings"."tag_id" GROUP BY "nodes"."id") pg_search_93dd21271636bd02b16bc3 ON pg_search_93dd21271636bd02b16bc3.id = "nodes"."id" WHERE (((to_tsvector('english', coalesce("nodes"."name"::text, '')) || to_tsvector('english', coalesce("nodes"."user_id"::text, '')) || to_tsvector('english', coalesce("nodes"."circa"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_tagged_user_names"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_user_tag_list"::text, '')) || to_tsvector('english', coalesce(pg_search_121ea89914a721445aee70.pg_search_344e3c62d13849726da22e::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_acfcdbc0b3d3a65f40eab7::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_eeb842708b24d4f7fcf549::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_cb8eb1b84bf18ee1412ffd::text, '')) || to_tsvector('english', coalesce(pg_search_b1bc4c0f44e7f4799d8caf.pg_search_9474fb5b090e75ade5136f::text, '')) || to_tsvector('english', coalesce(pg_search_93dd21271636bd02b16bc3.pg_search_484f77386a5aecc6e01094::text, ''))) @@ (to_tsquery('english', ''' ' || 'dan' || ' ''' || ':*')))) ORDER BY pg_search_rank DESC, "nodes"."id" ASC
=> [#<Node id: 85, name: "House Fire 2", family_tree_id: 57, user_id: 57, media_id: 228, media_type: "Video", created_at: "2015-05-15 00:20:26", updated_at: "2015-06-08 22:25:49", circa: nil, is_comment: nil, cached_votes_total: 0, cached_votes_score: 0, cached_votes_up: 0, cached_votes_down: 0, cached_weighted_score: 0, cached_weighted_total: 0, cached_weighted_average: 0.0, cached_user_tag_list: "danny@test.com, abc@test.com", cached_num_user_tags: 2, cached_tagged_user_names: ["Daniel Marty", "Marcamus Prime"]>]
[187] pry(main)> Node.node_search("danny")
Node Load (2.8ms) SELECT "nodes".*, ((ts_rank((to_tsvector('english', coalesce("nodes"."name"::text, '')) || to_tsvector('english', coalesce("nodes"."user_id"::text, '')) || to_tsvector('english', coalesce("nodes"."circa"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_tagged_user_names"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_user_tag_list"::text, '')) || to_tsvector('english', coalesce(pg_search_121ea89914a721445aee70.pg_search_344e3c62d13849726da22e::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_acfcdbc0b3d3a65f40eab7::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_eeb842708b24d4f7fcf549::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_cb8eb1b84bf18ee1412ffd::text, '')) || to_tsvector('english', coalesce(pg_search_b1bc4c0f44e7f4799d8caf.pg_search_9474fb5b090e75ade5136f::text, '')) || to_tsvector('english', coalesce(pg_search_93dd21271636bd02b16bc3.pg_search_484f77386a5aecc6e01094::text, ''))), (to_tsquery('english', ''' ' || 'danny' || ' ''' || ':*')), 0))) AS pg_search_rank FROM "nodes" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("comments"."message"::text, ' ') AS pg_search_344e3c62d13849726da22e FROM "nodes" INNER JOIN "comments" ON "comments"."node_id" = "nodes"."id" GROUP BY "nodes"."id") pg_search_121ea89914a721445aee70 ON pg_search_121ea89914a721445aee70.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("users"."first_name"::text, ' ') AS pg_search_acfcdbc0b3d3a65f40eab7, string_agg("users"."last_name"::text, ' ') AS pg_search_eeb842708b24d4f7fcf549, string_agg("users"."email"::text, ' ') AS pg_search_cb8eb1b84bf18ee1412ffd FROM "nodes" INNER JOIN "users" ON "users"."id" = "nodes"."user_id" GROUP BY "nodes"."id") pg_search_4aab10cdca183dac25f479 ON pg_search_4aab10cdca183dac25f479.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("memberships"."relation"::text, ' ') AS pg_search_9474fb5b090e75ade5136f FROM "nodes" INNER JOIN "family_trees" ON "family_trees"."id" = "nodes"."family_tree_id" INNER JOIN "memberships" ON "memberships"."family_tree_id" = "family_trees"."id" GROUP BY "nodes"."id") pg_search_b1bc4c0f44e7f4799d8caf ON pg_search_b1bc4c0f44e7f4799d8caf.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("tags"."name"::text, ' ') AS pg_search_484f77386a5aecc6e01094 FROM "nodes" INNER JOIN "taggings" ON "taggings"."taggable_id" = "nodes"."id" AND "taggings"."taggable_type" = 'Node' AND "taggings"."context" = 'user_tags' INNER JOIN "tags" ON "tags"."id" = "taggings"."tag_id" GROUP BY "nodes"."id") pg_search_93dd21271636bd02b16bc3 ON pg_search_93dd21271636bd02b16bc3.id = "nodes"."id" WHERE (((to_tsvector('english', coalesce("nodes"."name"::text, '')) || to_tsvector('english', coalesce("nodes"."user_id"::text, '')) || to_tsvector('english', coalesce("nodes"."circa"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_tagged_user_names"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_user_tag_list"::text, '')) || to_tsvector('english', coalesce(pg_search_121ea89914a721445aee70.pg_search_344e3c62d13849726da22e::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_acfcdbc0b3d3a65f40eab7::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_eeb842708b24d4f7fcf549::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_cb8eb1b84bf18ee1412ffd::text, '')) || to_tsvector('english', coalesce(pg_search_b1bc4c0f44e7f4799d8caf.pg_search_9474fb5b090e75ade5136f::text, '')) || to_tsvector('english', coalesce(pg_search_93dd21271636bd02b16bc3.pg_search_484f77386a5aecc6e01094::text, ''))) @@ (to_tsquery('english', ''' ' || 'danny' || ' ''' || ':*')))) ORDER BY pg_search_rank DESC, "nodes"."id" ASC
=> []
请注意,它在查询 danny
时返回空结果,但在查询 dan
和 dann
时返回正确的记录。
鉴于字符串是 danny@test.com
,danny
不是该字符串的前缀吗?
请注意,对于电子邮件地址 abc@test.com
,搜索 abc
会返回正确的结果,如下所示:
[188] pry(main)> Node.node_search("abc")
Node Load (6.9ms) SELECT "nodes".*, ((ts_rank((to_tsvector('english', coalesce("nodes"."name"::text, '')) || to_tsvector('english', coalesce("nodes"."user_id"::text, '')) || to_tsvector('english', coalesce("nodes"."circa"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_tagged_user_names"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_user_tag_list"::text, '')) || to_tsvector('english', coalesce(pg_search_121ea89914a721445aee70.pg_search_344e3c62d13849726da22e::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_acfcdbc0b3d3a65f40eab7::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_eeb842708b24d4f7fcf549::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_cb8eb1b84bf18ee1412ffd::text, '')) || to_tsvector('english', coalesce(pg_search_b1bc4c0f44e7f4799d8caf.pg_search_9474fb5b090e75ade5136f::text, '')) || to_tsvector('english', coalesce(pg_search_93dd21271636bd02b16bc3.pg_search_484f77386a5aecc6e01094::text, ''))), (to_tsquery('english', ''' ' || 'abc' || ' ''' || ':*')), 0))) AS pg_search_rank FROM "nodes" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("comments"."message"::text, ' ') AS pg_search_344e3c62d13849726da22e FROM "nodes" INNER JOIN "comments" ON "comments"."node_id" = "nodes"."id" GROUP BY "nodes"."id") pg_search_121ea89914a721445aee70 ON pg_search_121ea89914a721445aee70.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("users"."first_name"::text, ' ') AS pg_search_acfcdbc0b3d3a65f40eab7, string_agg("users"."last_name"::text, ' ') AS pg_search_eeb842708b24d4f7fcf549, string_agg("users"."email"::text, ' ') AS pg_search_cb8eb1b84bf18ee1412ffd FROM "nodes" INNER JOIN "users" ON "users"."id" = "nodes"."user_id" GROUP BY "nodes"."id") pg_search_4aab10cdca183dac25f479 ON pg_search_4aab10cdca183dac25f479.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("memberships"."relation"::text, ' ') AS pg_search_9474fb5b090e75ade5136f FROM "nodes" INNER JOIN "family_trees" ON "family_trees"."id" = "nodes"."family_tree_id" INNER JOIN "memberships" ON "memberships"."family_tree_id" = "family_trees"."id" GROUP BY "nodes"."id") pg_search_b1bc4c0f44e7f4799d8caf ON pg_search_b1bc4c0f44e7f4799d8caf.id = "nodes"."id" LEFT OUTER JOIN (SELECT "nodes"."id" AS id, string_agg("tags"."name"::text, ' ') AS pg_search_484f77386a5aecc6e01094 FROM "nodes" INNER JOIN "taggings" ON "taggings"."taggable_id" = "nodes"."id" AND "taggings"."taggable_type" = 'Node' AND "taggings"."context" = 'user_tags' INNER JOIN "tags" ON "tags"."id" = "taggings"."tag_id" GROUP BY "nodes"."id") pg_search_93dd21271636bd02b16bc3 ON pg_search_93dd21271636bd02b16bc3.id = "nodes"."id" WHERE (((to_tsvector('english', coalesce("nodes"."name"::text, '')) || to_tsvector('english', coalesce("nodes"."user_id"::text, '')) || to_tsvector('english', coalesce("nodes"."circa"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_tagged_user_names"::text, '')) || to_tsvector('english', coalesce("nodes"."cached_user_tag_list"::text, '')) || to_tsvector('english', coalesce(pg_search_121ea89914a721445aee70.pg_search_344e3c62d13849726da22e::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_acfcdbc0b3d3a65f40eab7::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_eeb842708b24d4f7fcf549::text, '')) || to_tsvector('english', coalesce(pg_search_4aab10cdca183dac25f479.pg_search_cb8eb1b84bf18ee1412ffd::text, '')) || to_tsvector('english', coalesce(pg_search_b1bc4c0f44e7f4799d8caf.pg_search_9474fb5b090e75ade5136f::text, '')) || to_tsvector('english', coalesce(pg_search_93dd21271636bd02b16bc3.pg_search_484f77386a5aecc6e01094::text, ''))) @@ (to_tsquery('english', ''' ' || 'abc' || ' ''' || ':*')))) ORDER BY pg_search_rank DESC, "nodes"."id" ASC
=> [#<Node id: 85, name: "House Fire 2", family_tree_id: 57, user_id: 57, media_id: 228, media_type: "Video", created_at: "2015-05-15 00:20:26", updated_at: "2015-06-08 22:25:49", circa: nil, is_comment: nil, cached_votes_total: 0, cached_votes_score: 0, cached_votes_up: 0, cached_votes_down: 0, cached_weighted_score: 0, cached_weighted_total: 0, cached_weighted_average: 0.0, cached_user_tag_list: "danny@test.com, abc@test.com", cached_num_user_tags: 2, cached_tagged_user_names: ["Daniel Marty", "Marcamus Prime"]>,
#<Node id: 86, name: "10PP Form Video", family_tree_id: 57, user_id: 57, media_id: 229, media_type: "Video", created_at: "2015-05-15 01:26:28", updated_at: "2015-06-05 21:10:09", circa: nil, is_comment: nil, cached_votes_total: 1, cached_votes_score: 1, cached_votes_up: 1, cached_votes_down: 0, cached_weighted_score: 1, cached_weighted_total: 1, cached_weighted_average: 0.0, cached_user_tag_list: "gerry@test.com", cached_num_user_tags: 1, cached_tagged_user_names: ["Gerry Atrick"]>]
这可能是什么原因?
编辑 1
为了让事情变得更奇怪,我认为是 @
可能会丢弃前缀搜索,所以我通过简单地更改 cached_user_tag_list
的属性来测试它danny@test.com
到 dannyk@test.com
。然后我搜索dannyk
,它返回了正确的结果,但是当我搜索danny
时,它仍然返回[]
。我不知道为什么。
最佳答案
您可以打开:trigram search
并指定阈值。它匹配出现在可搜索文本中任意位置的任意子字符串。您的最终代码如下所示。
pg_search_scope :node_search, against: [:name, :user_id, :circa, :cached_tagged_user_names, :cached_user_tag_list],
using: { tsearch: { any_word: true, dictionary: :english, prefix: true}, :trigram => { :threshold => 0.1 } },
:associated_against => {
comments: [:message],
user: [:first_name, :last_name, :email],
memberships: [:relation],
user_tags: [:name]
}
关于ruby-on-rails - 为什么 pg_search 前缀不能像我预期的那样工作?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30720509/
以下是一个非常简单的ruby服务器。 require 'socket' local_socket = Socket.new(:INET, :STREAM) local_addr = Socket.
我正在使用 OS X(使用 bash),并且是 unix 的新手。我想知道是否可以修改一些文件以便运行 ruby 程序,我不需要“ruby file.rb”,而是可以运行“ruby.rb”。 有理
我在用 Ruby 替换字符串时遇到一些问题。 我的原文:人之所为不如兽之所为。 我想替换为:==What== human does is not like ==what== animal does.
我想在一个循环中从 Ruby 脚本做这样的事情: 写一个文件a.rb(每次迭代都会改变) 执行系统(ruby 'a.rb') a.rb 将带有结果的字符串写入文件“results” a.rb 完成并且
我的问题是尝试创建一个本地服务器,以便我可以理解由我的新团队开发的应用程序。我的问题是我使用的是 Ruby 2.3.3,而 Gemfile 需要 2.3.1。我无法编辑 Gemfile,因为我被告知很
我有一个使用 GLI 框架用 Ruby 编写的命令行实用程序。我想在我的主目录中配置我的命令行实用程序,使用 Ruby 本身作为 DSL 来处理它(类似于 Gemfile 或 Rakefile)。 我
我的 Rails 应用 Controller 中有这段代码: def delete object = model.datamapper_class.first(:sourced_id =>
我正在寻找的解析器应该: 对 Ruby 解析友好, 规则设计优雅, 产生用户友好的解析错误, 用户文档的数量应该比计算器示例多, UPD:允许在编写语法时省略可选的空格。 快速解析不是一个重要的特性。
我刚开始使用 Ruby,听说有一种“Ruby 方式”编码。除了 Ruby on Rails 之外,还有哪些项目适合学习并被认可且设计良好? 最佳答案 Prawn被明确地创建为不仅是一个该死的好 PDF
我知道之前有人问过类似的问题,但是我该如何构建一个无需在前面输入“ruby”就可以在终端中运行的 Ruby 文件呢? 这里的最终目标是创建一个命令行工具包类型的东西。现在,为了执行我希望用户能够执行的
例如哈希a是{:name=>'mike',:age=>27,:gender=>'male'}哈希 b 是 {:name=>'mike'} 我想知道是否有更好的方法来判断 b 哈希是否在 a 哈希内,而
我是一名决定学习 Ruby 和 Ruby on Rails 的 ASP.NET MVC 开发人员。我已经有所了解并在 RoR 上创建了一个网站。在 ASP.NET MVC 上开发,我一直使用三层架构:
最近我看到 Gary Bernhardt 展示了他用来在 vim 中执行 Ruby 代码的 vim 快捷方式。捷径是 :map ,t :w\|:!ruby %. 似乎这个方法总是执行系统 Rub
在为 this question about Blue Ruby 选择的答案中,查克说: All of the current Ruby implementations are compiled to
我有一个 Ruby 数组 > list = Request.find_all_by_artist("Metallica").map(&:song) => ["Nothing else Matters"
我在四舍五入时遇到问题。我有一个 float ,我想将其四舍五入到小数点后的百分之一。但是,我只能使用 .round ,它基本上将它变成一个 int,意思是 2.34.round # => 2. 有没
我使用 ruby on rails 编写了一个小型 Web 应用程序,它的主要目的是上传、存储和显示来自 xml(文件最多几 MB)文件的结果。运行大约 2 个月后,我注意到 mongrel 进程
我们如何用 Ruby 转换像这样的字符串: 𝑙𝑎𝑡𝑜𝑟𝑟𝑒 收件人: Latorre 最佳答案 s = "𝑙𝑎𝑡𝑜𝑟𝑟𝑒" => "𝑙𝑎𝑡𝑜𝑟𝑟𝑒" s.u
通过 ruby monk 时,他们偶尔会从左侧字段中抛出一段语法不熟悉的代码: def compute(xyz) return nil unless xyz xyz.map {|a,
不确定我做错了什么,但我似乎弄错了。 问题是,给你一串空格分隔的数字,你必须返回最大和最小的数字。 注意:所有数字都是有效的 Int32,不需要验证它们。输入字符串中始终至少有一个数字。输出字符串必须
我是一名优秀的程序员,十分优秀!