gpt4 book ai didi

javascript - Perceptron Javascript 不一致

转载 作者:行者123 更新时间:2023-11-29 11:00:01 25 4
gpt4 key购买 nike

构建一个基本的感知器。我训练后的结果非常不一致,即使经过 1000 个时代也是如此。权重似乎调整得当,但模型无法准确预测。将不胜感激第二双眼睛在结构上,努力寻找我哪里出错了。准确率始终达到 60%。

 // Perceptron
class Perceptron {

constructor (x_train, y_train, learn_rate= 0.1, epochs=10) {
this.epochs = epochs
this.x_train = x_train
this.y_train = y_train
this.learn_rate = learn_rate
this.weights = new Array(x_train[0].length)

// initialize random weights
for ( let n = 0; n < x_train[0].length; n++ ) {
this.weights[n] = this.random()
}
}

// generate random float between -1 and 1 (for generating weights)
random () {
return Math.random() * 2 - 1
}

// activation function
activation (n) {
return n < 0 ? 0 : 1
}

// y-hat output given an input tensor
predict (input) {
let total = 0
this.weights.forEach((w, index) => { total += input[index] * w }) // multiply each weight by each input vector value
return this.activation(total)
}

// training perceptron on data
fit () {
for ( let e = 0; e < this.epochs; e++) { // epochs loop
for ( let i = 0; i < this.x_train.length; i++ ) { // iterate over each training sample
let prediction = this.predict(this.x_train[i]) // predict sample output
console.log('Expected: ' + this.y_train[i] + ' Model Output: ' + prediction) // log expected vs predicted
let loss = this.y_train[i] - prediction // calculate loss
for ( let w = 0; w < this.weights.length; w++ ) { // loop weights for update
this.weights[w] += loss * this.x_train[i][w] * this.learn_rate // update all weights to reduce loss
}
}
}
}
}

x = [[1, 1, 1], [0, 0, 0], [0, 0, 1], [1, 1, 0], [0, 0, 1]]
y = [1, 0, 0, 1, 0]

p = new Perceptron(x, y, epochs=5000, learn_rate=.1)

更新:

// Perceptron
module.exports = class Perceptron {

constructor (x_train, y_train, epochs=1000, learn_rate= 0.1) {

// used to generate percent accuracy
this.accuracy = 0
this.samples = 0
this.x_train = x_train
this.y_train = y_train
this.epochs = epochs
this.learn_rate = learn_rate
this.weights = new Array(x_train[0].length)
this.bias = 0

// initialize random weights
for ( let n = 0; n < x_train[0].length; n++ ) {
this.weights[n] = this.random()
}
}

// returns percent accuracy
current_accuracy () {
return this.accuracy/this.samples
}

// generate random float between -1 and 1 (for generating weights)
random () {
return Math.random() * 2 - 1
}

// activation function
activation (n) {
return n < 0 ? 0 : 1
}

// y-hat output given an input tensor
predict (input) {
let total = this.bias
this.weights.forEach((w, index) => { total += input[index] * w }) // multiply each weight by each input vector value
return this.activation(total)
}

// training perceptron on data
fit () {
// epochs loop
for ( let e = 0; e < this.epochs; e++) {

// for each training sample
for ( let i = 0; i < this.x_train.length; i++ ) {

// get prediction
let prediction = this.predict(this.x_train[i])
console.log('Expected: ' + this.y_train[i] + ' Model Output: ' + prediction)

// update accuracy measures
this.y_train[i] === prediction ? this.accuracy += 1 : this.accuracy -= 1
this.samples++

// calculate loss
let loss = this.y_train[i] - prediction

// update all weights
for ( let w = 0; w < this.weights.length; w++ ) {
this.weights[w] += loss * this.x_train[i][w] * this.learn_rate
}

this.bias += loss * this.learn_rate
}

// accuracy post epoch
console.log(this.current_accuracy())
}
}
}

最佳答案

这只是一个语法错误:)

调换最后两个参数的顺序,像这样:

p = new Perceptron(x, y, learn_rate=.1, epochs=5000)

现在一切正常。

然而,更严重的问题在于你的实现:

你忘记了偏见

通过感知器,您正在尝试学习线性函数,某种形式的

y = wx + b

但是你目前正在计算的只是

y = wx

如果您要学习的只是单个输入的身份函数,那么这很好,就像您的情况一样。但是一旦你开始做一些稍微复杂一点的事情,比如尝试学习 AND 函数,它就无法工作了,它可以这样表示:

y = x1 + x2 - 1.5

如何修复?

非常简单,只需在构造函数中初始化 this.bias = 0 即可。然后,在 predict() 中,初始化 let total = this.bias 并在 fit() 中添加 this.bias += loss * this.learn_rate 就在最内层循环之后。

关于javascript - Perceptron Javascript 不一致,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48968050/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com